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Abstract

A novel computational scheme has been developed for simulating compressible

multiphase flows interacting with solid structures. The multiphase fluid is

computed using a Godunov-type finite-volume method. This has been extended

to allow computations on moving meshes using a direct arbitrary-Eulerian-

Lagrangian (ALE) scheme. The method has been implemented within a

Lagrangian hydrocode, which allows modeling the interaction with Lagrangian

structural regions. Although the above scheme is general enough for use on many

applications, the ultimate goal of the research is the simulation of heterogeneous

energetic material, such as explosives or propellants. The method is powerful

enough for application to all stages of the problem, including the initial burning

of the material, the propagation of blast waves, and interaction with surrounding

structures. The method has been tested on a number of canonical multiphase tests

as well as fluid-structure interaction problems.
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Chapter 1

Introduction

The reaction and propagation of energetic materials has been the subject

of extensive research. Recently, the importance of the multi-component

characteristics of these materials has been recognized, leading to greater

understanding of areas such as deflagration to detonation transition (DDT)

and the performance of non-ideal explosives and propellants. The desire to

accurately model these phenomena has resulted in a need for new computational

models capable of efficiently simulating these multi-component mixtures and the

interactions with their surroundings.

1.1 Multiphase Flow Overview

Interest in the dynamics of multi-material fluid mixtures has grown recently.

This subcategory of fluid mechanics is often referred to as multiphase or multi-

component flow in the literature and covers a wide spectrum of flow conditions

and applications. Multiphase flows are categorized by phase of the materials: gas-

liquid, gas-solid, or liquid-solid flow. The current research is most concerned with

particle-laden gas flow, where discrete solid particles are embedded in a carrier gas.

The presence of inert or reactive particles can significantly affect the flow through

momentum and energy exchanges. These types of flows are encountered in many

engineering applications, such as solid-propellant rocket motors, blast waves in

dusty atmospheres, and gas-permeable reactive granular materials.
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Gas-particle flows can be further categorized into flow regimes according to

the particle concentration of the flow. Flows with low particle concentrations are

referred to as dilute multiphase flow. Here, the particles have little effect on the

carrier fluid and the particle motion is generally dominated by the interaction

with the surrounding fluid, as opposed to the presence of other particles. As

the particle concentration increases, the particles may start to contribute to the

dynamics of the gas through momentum and energy transfer. At still larger

concentrations, the volume occupied by the particles begins to influence the fluid

flow. In addition, as particles become close in proximity to each other, particles

will start to influence neighboring particles through wake effects or even particle-

particle collisions. These later phenomena are all characteristics of the dense

multiphase regime.

1.2 Multiphase Computational Methods

Computational simulation is an integral part of engineering analysis and can

help to provide greater insight into complex physical processes. Hence, modeling

multiphase gas-particle flow has become an important area of computational

mechanics with many unique characteristics and challenges. The literature

provides a number of reviews on the current methodologies [1–3] as well as a

number of textbooks on the subject [4]. The different computational approaches

vary widely in their prediction fidelity and computational requirements. Many

of the models incorporate various simplifying assumptions, thereby limiting their

use to particular multiphase regimes. Thus, the numerical algorithms used for

simulation of multiphase flow require careful consideration of the flow regimes

along with the relevant numerics.

As the capacity of computational resources has improved, so has the ability to

perform more challenging simulations. Focus has shifted from running isolated

physics models to performing full-system calculations. With respect to the

multiphase modeling of energetic materials, this includes the initial burning of



3

the material, the propagation of blast waves, and interaction with surrounding

structures. This calculation encompasses the full range of multiphase flow

regimes. Initially, during the detonation phase, the granular multiphase mixture is

characteristic of a very dense porous flow regime, with the solid phase occupying

most of the volume. As the blast wave propagates, the flow becomes more

dilute with discrete particles being controlled primarily by aerodynamic forces.

In between there is a transition from dense to dilute flow where the material is

accelerated and dispersed. Therefore, the challenge for the current research is to

develop a numerical scheme valid for all of these regimes.

One option, which is common in combustion simulations, is to derive

conservation equations for averaged flow variables. This is the single-phase option

and neglects the discrete nature of the separate phases. This method could

homogenize the phases together or keep track of individual species for evaluation

of the state data. Although this is a good choice for some problems, this method

produces erroneous results for phases that do not have similar velocities.

Another option is to resolve all the material interfaces in the problem. This is

also known as a multi-fluid algorithm in which each material interface is explicitly

tracked through the simulation [5–7]. This is only feasible for problems where

the size of the interfaces are on the same order as the length scale of the overall

problem. For example, this is practical for simulating the dynamics of a single

liquid droplet, or the interaction of a small number of particles. However, tracking

millions of micron sized particles as they travel several meters is not practical with

current computational resources.

For dilute particulate flows, a continuum based Eulerian treatment is often

used for the gas phase, while the discrete particles are individually tracked in a

Lagrange methodology. Lagrangian particle-tracking algorithms have been used for

compressible gas-particle flows by a number of researchers [8–11]. These methods

have the advantage of tracking the evolution of individual particles more accurately

than Eulerian methods. However, for large numbers of particles this can be very
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computationally intensive.

Another option is to treat both the gas and particle phases as separate

continuum materials and use an Eulerian approach for both. The premise of

this approach is that each component of the multiphase mixture is treated as

an independent continuum material with its own momentum and thermodynamic

state data. Therefore, separate field equations are derived for each component

assuming the coexistence of the phases at every point in the flow-field. The particle

material interfaces are assumed to be much smaller than the grid resolution in the

problem. Therefore, their interactions are modeled using sub-grid constitutive

relations. This method allows for more accurate inter-phase coupling and is

more computationally efficient for large numbers of particles. However, there

is no universally accepted formulation of the conservation laws governing these

complex flows. Thus, several different approaches have been employed for various

multiphase problems.

Loth and his coworkers [9,12–14] looked at shock propagation and detonations

with inert particles. They used an unstructured finite-element method using

an Eulerian-Eulerian description of the dilute two-phase flow. However, their

hydrodynamic model neglects the volume occupied by the particles. This

assumption is not always valid, particularly in the granular bed of an energetic

material.

Papalexandris [15] modeled detonations of gas-particle mixtures taking the

particle volume into account. However, the solid phase was assumed to be

incompressible, ignoring the effect of solid phase pressure and neglecting the non-

conservative nozzling terms. This could have an adverse effect on the compaction

of the solid material. Similarly, Powers et al. [16,17] neglected the nozzling terms,

but did use a compressible solid.

The pioneering work of Baer and Nunziato [18] used mixture theory to

investigate convective burning in DDT. Their formulation (commonly referred to

as BN in the literature) takes into account the compressibility of all phases. This
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model includes the interfacial nozzling terms in the formulation. This raises the

question of how to evaluate these terms and can lead to non-unique estimation of

the interface pressure and velocity. The choice made for these terms determines

the differential expression of the pressure-equilibrium condition. See, for example,

Saurel and Abgrall [19] for an alternative representation.

Abgrall and Saurel [20] used the averaging techniques of Drew and Passman [21]

to derive conservation laws at the discrete level. They referred to this technique

as the Discrete Equation Method (DEM). This approach applies a finite-

volume scheme to a multiphase control volume, obtaining a Riemann solution

at all boundaries and internal interfaces. The method results in a system of

multi-component conservation laws which are unconditionally hyperbolic. The

continuous limit of the discretization results in explicit expressions for the non-

conservative terms and relaxation processes. The overall assumptions of this

method are directly applicable to simulating reactive granular materials, as seen

in Chinnayya et al. [22].

1.3 Structural Interaction

A particular interest, when studying energetic materials, is their interaction with

nearby structural material. The energetic material is often confined by other inert

material. The reaction strongly depends on the various pressure waves propagating

through the reactive mixture and surrounding material. In the far-field, the

effects of energetic materials on external structures is of great interest. Accurately

determining the damage to nearby infrastructure has many applications to defense,

security, and safety programs.

One computational strategy for coupling the interactions of fluids and

structures together is to solve both materials on a moving grid. There are

a number of advantages to solving flow problems on moving meshes. These

methods are often referred to as arbitrary-Eulerian-Lagrangian (ALE) methods.

These algorithms allow the solution of problems with moving boundaries. In
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addition, mesh points can be rearranged during the solution to better resolve

specific flow features, such as shocks and material interfaces. There are essentially

two approaches for solving the ALE equations: a split approach and an un-

split approach. The split approach separates the time-step into a Lagrangian

step followed by mesh relaxation and material advection or remap step [7, 23–26].

Although the Lagrange plus remap approach has some benefits for single-phase

hydrodynamic problems, its application to the multiphase conservation laws is not

straightforward. This is because each phase has its own distinct velocity and there

is no single Lagrangian motion of the material. Thus, the multiphase equations are

inherently Eulerian in nature. Ruggirello et al. [27] used the bulk material motion

to formulate a multiphase Lagrangian method, but this requires the use of a drift

velocity, such that the material is not constrained to the computational cell as in

a standard single-phase Lagrangian method. The un-split method, also referred

to as a direct-ALE method, reformulates the governing equations in a moving

reference frame and solves the grid motion and fluid flow simultaneously in a

single step [26,28–35]. Saurel et al. [36] applied the DEM on moving meshes using

the un-split direct-ALE approach. However, the method was restricted to one-

dimensional rectangular (Cartesian) geometries. Due to the apparent Cartesian

grid structure of the underlying formulation, the algorithms do not directly extend

to multiple dimensions.

There are many examples of single-phase fluid algorithms coupled to structural

dynamics codes to investigate fluid-structure interaction in the literature, e.g. [37].

However, computational investigations on the interaction of multiphase fluids with

structures are rare. Frost et al. [38] studied the explosive dispersal of solid particles.

A loosely-coupled technique was used to evaluate the response of a cantilever rod

to the multiphase mixture. The BN multiphase model was used to compute the

momentum and pressure of the multiphase fluid. This was then used to compute

time-dependent force boundary conditions for a commercial structural response

code. This loosely coupled approach has a number of deficiencies when the motion
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of the fluid and solid are strongly coupled together. Knap and Stevens [39] used

the DEM to model structural response using a diffuse boundary. In this method

a single Eulerian mesh was used to compute both the fluid and solid response.

The solid was treated as a distinct phase in the multiphase model. There was no

interface tracking employed, resulting in a diffusive interface between the fluid and

solid. It was found that excessively fine grid resolution was required to resolve

the boundary adequately. It is expected that explicitly tracking the Lagrangian

motion of the structural boundary would lead to improved representation of the

structural response. However, the author knows of no currently available reports

describing an Eulerian-Eulerian sub-grid multiphase solver capable of interacting

with a Lagrangian structure.

1.4 Research Objective

The objective of the current research is to extend the multiphase DEM method for

use in fluid-structure interaction calculations. The governing equations have been

reformulated using a direct-ALE scheme and implemented within a Lagrangian

hydrocode, allowing interaction with Lagrangian structural regions. The primary

application of the model is the simulation of energetic material. The method

is powerful enough for application to all stages of the problem, including the

initial burning of the material, the propagation of blast waves, and interaction

with surrounding structures. Although the eventual goal is to utilize the model

for reactive materials, the focus so far has been on evaluating the method using

inert materials. The method is applicable to unstructured meshes in two and three

dimensions.

1.5 Research Contribution and Scope

The computational model discussed in this report has been implemented in an

existing hydrocode. A description of this code is found in [40]. The code is

designed to run coupled multi-physics problems with the capability to model

explicit and implicit structural mechanics, heat transfer, chemistry, MHD, and fluid
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flow. It also allows material advection for running on ALE (moving) meshes. The

software is currently under development with a large number of active developers.

Implementing the current multiphase model into an existing framework had many

advantages as well as some complications.

One advantage was that the code infrastructure was already in place. This

included a number of useful data structures for holding and manipulating data.

Also, routines for input-file parsing, mesh generation, data output, and post-

processing were already written. The underlying code automatically generates

most of the geometric information, such as element connectivity, cell volumes,

surface normals, and volume fluxes. The infrastructure for performing parallel

communication was also provided, resulting the ability to run the current model

on massively parallel computer architectures.

Another advantage was that a number of physics models were written before

this project started. For example, the Lagrangian structural solver used in the

current study was already available in the code, thus it did not need to be developed

specifically for this project. Similarly, the mesh-relaxation algorithms used to move

the mesh were in the code. Existing routines to evaluate equations of state and

other material parameters were also reused. Therefore, in subsequent derivations

of the method, the preexisting capabilities will only be discussed briefly and specific

details of their methodologies will be omitted.

Before, the current project started, a preliminary multiphase capability had

also been developed. This model was added in order to evaluate a number of

different models. One of the models was the DEM, which is used in the current

study. That model has been largely rewritten for the current study. The model

was made more robust by fixing bugs and making all of the models work together

more appropriately. The most relevant enhancements for the current study was the

addition of the ALE capability to run on moving meshes and adding the coupling

to the Lagrangian structure.
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Chapter 2

Theory

A novel multiphase model has been developed for the simulation of multiphase

mixtures interacting with solid structures. This chapter derives this model and

discusses its implementation. First, a detailed description of the multiphase model

is provided with particular emphasis on its extension to moving-mesh calculations.

Next, there is a brief description of the Lagrangian structural model. This is

followed with details of how it was coupled to the new multiphase capability.

2.1 The Multiphase Model

This section derives the multiphase model. It begins with a general discussion

of the equations relevant to multiphase mixtures. These are used to derive the

hydrodynamic conservation laws used in the current study. It is then shown how

these are discretized and solved numerically. The section finishes with a description

of the sub-grid relaxation models used in the current formulation.

2.1.1 Conservation Laws

The flow of a bulk material is described by a system of conservation laws commonly

referred to as the Euler equations. The derivation of these equations is well known

and can be found in various texts on continuum mechanics (e.g. [41–43]). For a

fixed Eulerian coordinate frame, ~x ∈ R
3, these equations are given as
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Mass Balance (Continuity Equation)

∂ (ρ)

∂t
+

∂ (ρuj)

∂xj

= 0 (2.1)

Momentum Balance (Newton’s Second Law)

∂ (ρui)

∂t
+

∂ (ρuiuj − σji)

∂xj

= 0 (2.2)

Energy Balance (First Law of Thermodynamics)

∂ (ρE)

∂t
+

∂ (ρujE − σjiui)

∂xj

= 0 (2.3)

which represent the conservation of mass (2.1), momentum (2.2), and energy (2.3).

They are presented in conservative form and make use of index notation where

summation is implied over repeated indices. The above equations neglect a number

of physical effects, such as body force, viscosity, and heat flux. Therefore, the

Froude, Reynolds, and Nusselt numbers are all assumed to be large with respect

to the length scales associated with the bulk flow. However, as will be shown in

subsequent sections, this does not prevent the model from accounting for viscous

forces and heat transfer between phases at the sub-grid level.

In the above equations, ρ denotes the mass density of the material and ui is

the i component of the velocity vector. The specific total energy, E, is given by

E = ε +
1

2
ujuj

where ε is the specific internal energy. The Cauchy (total) stress tensor, σ, is

symmetric (σij = σji) and can be expanded as

σ =











σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33











The stress is decomposed into the normal and deviatoric components such that

σij = −pδij + τij
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where the pressure obeys an appropriate equation of state (p = p(ρ, ε)) and the

deviatoric stress (τ ) is obtained from a constitutive relation dependent upon the

motion of the material. Although the temperature does not appear in the above

equations, it is common to include a caloric equation of state to compute it (T =

T (ρ, ε)). For materials with strength, additional equations must be added to the

conservation laws to transport elastic and plastic deformation histories (see [44–

46]). The current work will neglect these equations and focus on materials with

no strength (τ = 0), while continuing to use the full stress tensor in the notation.

In subsequent derivations, it will be convenient to represent the conservation

laws with a more compact notation. Using tensor notation (2.1–2.3) can be

expressed as

∂W (~x, t)

∂t

∣

∣

∣

∣

~x

+
∂H i(~x, t)

∂xi

∣

∣

∣

∣

t

= S(~x, t) (2.4)

where W is the vector of conserved quantities

W (~x, t) =





























1

ρ

ρu1

ρu2

ρu3

ρE





























and the flux, H i, refers to a vector given by row i of tensor H

H(~x, t) =











0 ρu1 ρu1u1 − σ11 ρu1u2 − σ21 ρu1u3 − σ31 ρu1E − σ1juj

0 ρu2 ρu2u1 − σ12 ρu2u2 − σ22 ρu2u3 − σ32 ρu2E − σ2juj

0 ρu3 ρu3u1 − σ13 ρu3u2 − σ23 ρu3u3 − σ33 ρu3E − σ3juj











The flux can be further decomposed into its convective and Lagrangian

components, such that

H i(~x, t) = uiW + P i
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where the Lagrangian flux, P , is defined as

P (~x, t) =











−u1 0 −σ11 −σ21 −σ31 −σ1juj

−u2 0 −σ12 −σ22 −σ32 −σ2juj

−u3 0 −σ13 −σ23 −σ33 −σ3juj











and the repeated indices (j) in the energy column imply summation. A generic

source term has been added to the above system, where

S(~x, t) =





























0

0

0

0

0

0





























For the Euler equations presented in this section, the source term is zero. However,

the source is included here to facilitate inclusion of source terms later, such as body

force or chemical reaction terms.

Notice that the first row in (2.4) represents the trivial identity

∂1

∂t
+

∂0j

∂xj

= 0

This is included to simplify the addition of the volume-fraction evolution in later

sections.

2.1.2 Multiphase Equations

The Euler equations presented in the previous section describe the bulk motion

of a single material. The current work, however, is interested in the motion of

multi-component mixtures. These flows are characterized by immiscible materials

separated by discrete interfaces. In principle, it is possible to apply the Euler

equations (2.1–2.3) to each component separately up to the interface, but not

across it. Special treatment is required to account for the discontinuities at the

material boundary. This can be done through jump conditions across the interface
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to account for mass, momentum, and energy exchange between the materials.

These terms can be complicated and require detailed knowledge of the surface

geometry.

Modeling multi-component mixtures with many interfaces can become

impractical. Therefore, it is desirable to model these interface interactions in an

average sense. The most general form of the averaged multiphase flow equations

is the non-equilibrium model. In this model each phase has its own velocity and

thermodynamic state (pressure, temperature, etc.). The compressibility of each

phase is accounted for in this model. Considering two-phase gas-particle flow, this

model is described by a system of seven partial differential equations: conservation

equations for mass, momentum, and energy for each phase, plus an additional

equation for the evolution of volume fraction. For one-dimensional flow, these

equations are given as

∂(αg)

∂t
= −uI ∂(αg)

∂x
− µ (pp − pg)

∂(αgρg)

∂t
+ ∂(αgρgug)

∂x
= 0

∂(αgρgug)

∂t
+ ∂(αgρgugug+αgpg)

∂x
= pI ∂(αg)

∂x
+ λ (up − ug)

∂(αgρgEg)

∂t
+ ∂(αgρgEgug+αgpgug)

∂x
= pIuI ∂(αg)

∂x
+ µpI (pp − pg) + λuI (up − ug)

∂(αpρp)

∂t
+ ∂(αpρpup)

∂x
= 0

∂(αpρpup)

∂t
+ ∂(αpρpupup+αppp)

∂x
= −pI ∂(αg)

∂x
− λ (up − ug)

∂(αpρpEp)

∂t
+ ∂(αpρpEpup+αpppup)

∂x
=−pIuI ∂(αg)

∂x
−µpI (pp − pg)−λuI (up − ug)

(2.5)

where α is the phase volume fraction and the subscripts g and p indicate the flow

variable is associated with the gas or particle phase respectively. These equations

are determined by taking a phase average over the mixture, see [18, 19, 21, 47] for

discussions. The phase flow variables are defined as if they occupied their own

spatial locations, i.e. the gas-phase density (ρg) is defined as the mass of the gas

divided by the volume occupied by the gas. The above system is augmented with

the saturation constraint

αg + αp = 1

which relates the volume fractions of the gas and particle phases.
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The volume-fraction gradient terms on the right hand side prevent the system

from being expressed in conservative form. Thus, they are referred to as non-

conservative terms. Their effects are analogous to the volume change in a nozzle,

hence they are sometimes called nozzling terms [15,48].

The interface pressure, pI , and the interface velocity, uI , are determined

through closure relations. There is some debate about the form for these quantities

and a number of options have been presented in the literature. Baer and

Nunziato [18] developed a model based on continuum mixture theory. This model

assumes

pI = pg

uI = up

where the interface pressure is taken as the gas pressure and the interface velocity is

taken as the particle velocity. Saurel and Abgrall [19] used an ensemble averaging

procedure to construct a slightly modified model. This model uses the relations

pI = αgpg + αppp

uI =
αgρgug + αpρpup

αgρg + αpρp

where the interface pressure is defined as the mixture pressure and the interface

velocity is the velocity of the center of mass of the bulk material. Additional models

are also found in the literature. The interface closure model plays an important

role in the behavior of the model and its wave structure.

Mechanical interaction between phases is accounted for. The relaxation

parameter µ determines the rate at which pressure equilibrium is achieved. In many

multiphase-flow problems, pressure equilibrium occurs very rapidly compared with

other processes. Therefore, equilibrium is often assumed to be instantaneous and

µ is taken as infinite.

The parameter λ determines the rate at which velocity equilibrium occurs.

These terms are used to model the drag force between phases

~F = λ (up − ug)
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accounting for pressure and viscous forces at the phase boundaries. The parameter

λ is a function of the particle geometry and the surrounding fluid properties.

Heat transfer between the phases is another important process in multiphase

flow. This energy exchange due to conduction and convection can also be accounted

for, but the corresponding terms have not been included in the above system.

Although the seven-equation model (2.5) has had success in modeling

multiphase phenomena, there are some drawbacks. As previously mentioned,

the interfacial closure model is not well defined. In addition, numerical solution

of the above system poses some challenges. The model is an unconditionally

hyperbolic system, which naturally lends itself toward Godunov-type solution

methods. However, the associated Riemann problem depends on the entire seven-

equation system of coupled non-conservative equations. Although recent progress

has been made toward numerically consistent models [48, 49], the coupled system

is much more complicated than the corresponding single-phase system.

2.1.3 DEM Method

The objective of the current research is to obtain a set of conservation laws for

a mixture of multiple materials. It is desired to avoid some of the drawbacks

associated with the seven-equation model discussed in the previous section. This is

accomplished using the discrete equation method (DEM). The DEM is a powerful

methodology which allows for the computation of multiphase fluid flows. The

drawbacks of other models are avoided as the interface closure terms are inherent

in the model and only single-phase Riemann solutions are computed. This method

is an extension to the averaging methods described in Drew and Passman [21] and

was originally proposed by Abgrall and Saurel [20].

The averaging method begins by introducing the concept of an indicator

function, Ψπ, defined by:

Ψπ(~x, t) =











1 if location ~x is occupied by phase π at time t,

0 otherwise.
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The indicator is not differentiable at the interface and is therefore not a function

in the classical sense. Rather, it is a generalized function [21] and the subsequent

derivations must be interpreted with that in mind. The indicator function obeys

the evolution equation:

∂Ψπ(~x, t)

∂t

∣

∣

∣

∣

~x

+ uI
i

∂Ψπ(~x, t)

∂xi

∣

∣

∣

∣

t

= 0 (2.6)

where uI
i is the i component of the local interface velocity. This equation states

that the material derivative of Ψπ following the material interface between phases is

zero. For points not on the interface, Ψπ is a constant (either 0 or 1) and therefore

the partial derivatives are zero. For points on the interface, Ψπ is a jump that

remains constant and moves with the local interface velocity. Hence, the material

derivative is zero at the interface as well.

Following the steps of Chinnayya et al. [22], combine the indicator function

with the state and flux tensors using the product rule of differentiation:

∂ (ΨπW )

∂t
= Ψπ

∂W

∂t
+ W

∂Ψπ

∂t
∂ (ΨπH i)

∂xi

= Ψπ
∂H i

∂xi

+ H i
∂Ψπ

∂xi

Adding the above equations together, recalling the transport equation (2.4), and

performing some algebraic manipulation, results in the following:

∂ (ΨπW )

∂t
+

∂ (ΨπH i)

∂xi

= Ψπ

[

∂W

∂t
+

∂H i

∂xi

]

+ W
∂Ψπ

∂t
+ H i

∂Ψπ

∂xi

= ΨπS + W
∂Ψπ

∂t
+ H i

∂Ψπ

∂xi

= ΨπS − uI
i W

∂Ψπ

∂xi

+ H i
∂Ψπ

∂xi

= ΨπS +
(

H i − uI
i W

) ∂Ψπ

∂xi

Thus, the transport of local pure fluids is obtained,

∂ (ΨπW )

∂t

∣

∣

∣

∣

~x

+
∂ (ΨπH i)

∂xi

∣

∣

∣

∣

t

= ΨπS + H
lag
i

∂Ψπ

∂xi

∣

∣

∣

∣

t

(2.7)
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with

H
lag
i ≡ H i − uI

i W

=
(

ui − uI
i

)

W + P i (2.8)

defined as the Lagrangian flux. At phase boundaries the Lagrangian flux reduces

to

H
lag
i = P i

since the interface velocity is equal to the phase velocity at the interface. Since the

gradient of the indicator function is zero everywhere except at phase boundaries,

the Lagrangian flux is only evaluated at the interfaces.

Due to the discontinuous nature of Ψπ, this equation is difficult to deal

with in continuous form. Therefore, the numerical method will utilize a weak

implementation. Hence, convert this to an integral equation by integrating over

the volume of a computational cell, Ω,

∫

Ω

[

∂ (ΨπW )

∂t

∣

∣

∣

∣

~x

+
∂ (ΨπH i)

∂xi

∣

∣

∣

∣

t

]

dV =

∫

Ω

[ΨπS] dV +

∫

Ω

[

H
lag
i

∂Ψπ

∂xi

∣

∣

∣

∣

t

]

dV (2.9)

which can be decomposed into separate integrals for the temporal, convective, and

non-conservative terms.

2.1.4 ALE Equations

The goal now is to solve the DEM equations on a moving mesh. This is

often referred to as an arbitrary Lagrangian Eulerian (ALE) scheme. Saurel et

al. [36] used the DEM method on moving meshes for one-dimensional rectangular

(Cartesian) geometries. This section will extend that method to higher dimensions

and arbitrarily shaped control volume geometries.

We will begin by reproducing (2.9), accounting for the motion of the control
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volume

∫

Ω(t)

[

∂ (ΨπW )

∂t

∣

∣

∣

∣

~x

+
∂ (ΨπH i)

∂xi

∣

∣

∣

∣

t

]

dV =

∫

Ω(t)

[ΨπS] dV +

∫

Ω(t)

[

H
lag
i

∂Ψπ

∂xi

∣

∣

∣

∣

t

]

dV (2.10)

Notice that the integrals are now taken over a moving volume, Ω(t).

The time-derivative term

∫

Ω(t)

∂ (ΨπW )

∂t

∣

∣

∣

∣

~x

dV

will be addressed first. The first step in a standard finite-volume scheme is to

pull the time derivative in (2.10) outside the integral. However, the current term

is integrated over a moving control volume, and hence the integration volume is

time-dependent. Therefore, as it currently stands, the time derivative can’t be

pulled outside the integral. This is due to the fixed reference frame in which the

equations are expressed. As an alternative, the equation can be expressed in a

new reference frame, ~ξ(~x, t) ∈ R
3, that moves with the control volume. As seen

from this new reference frame, the integration domain does not vary with time.

Therefore, through this change of variables, an integral can be transformed, such

that
∫

Ω(t)

(•) dV ⇒
∫

Ωξ

(•) J dVξ

where dV = dx1 dx2 dx3 is the differential volume in the Eulerian frame and dVξ =

dξ1 dξ2 dξ3 is the differential volume in the ALE frame. The Jacobian, J , is defined

as the determinant of the Jacobi Matrix, J :

J =
∂~x

∂~ξ

∣

∣

∣

∣

t

, Jij =
∂xi

∂ξj

∣

∣

∣

∣

t

J = det(J) =
dV
dVξ

The chain rule provides expressions for the time derivative in the ALE reference
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frame:

∂

∂t

∣

∣

∣

∣

~ξ

=
∂

∂t

∣

∣

∣

∣

~x

+
∂xi

∂t

∣

∣

∣

∣

~ξ

∂

∂xi

∣

∣

∣

∣

t

=
∂

∂t

∣

∣

∣

∣

~x

+ ûi
∂

∂xi

∣

∣

∣

∣

t

(2.11)

where ûi(~x, t) = ∂xi

∂t

∣

∣

~ξ
is the velocity of the moving control volume with respect to

the fixed reference frame. Note that the form of (2.11) is similar to the definition

of the substantial (or material) derivative commonly used in fluid mechanics.

Recalling that the time derivative of the Jacobian is given by the expression:

∂J
∂t

∣

∣

∣

∣

~ξ

= J ∂ûi

∂xi

∣

∣

∣

∣

t

(2.12)

and applying (2.11) to the time derivative in (2.10) gives

∂ (ΨπW )

∂t

∣

∣

∣

∣

~x

=
∂ (ΨπW )

∂t

∣

∣

∣

∣

~ξ

− ûi
∂ (ΨπW )

∂xi

∣

∣

∣

∣

t

=
1

J
∂ (JΨπW )

∂t

∣

∣

∣

∣

~ξ

− ΨπW

J
∂J
∂t

∣

∣

∣

∣

~ξ

− ûi
∂ (ΨπW )

∂xi

∣

∣

∣

∣

t

=
1

J
∂ (JΨπW )

∂t

∣

∣

∣

∣

~ξ

− ΨπW
∂ûi

∂xi

∣

∣

∣

∣

t

− ûi
∂ (ΨπW )

∂xi

∣

∣

∣

∣

t

=
1

J
∂ (JΨπW )

∂t

∣

∣

∣

∣

~ξ

− ∂ (ûiΨπW )

∂xi

∣

∣

∣

∣

t

The time derivative on the right hand side is now taken with respect to the moving

reference frame, which is what was originally desired. In addition, there is an

additional convective derivative associated with the motion of the reference frame.

Substituting the right hand side into (2.10) yields:

∫

Ω(t)

[

1

J
∂ (JΨπW )

∂t

∣

∣

∣

∣

~ξ

− ∂ (ûiΨπW )

∂xi

∣

∣

∣

∣

t

+
∂ (ΨπH i)

∂xi

∣

∣

∣

∣

t

]

dV =

∫

Ω(t)

[ΨπS] dV +

∫

Ω(t)

[

H
lag
i

∂Ψπ

∂xi

∣

∣

∣

∣

t

]

dV (2.13)

This can be simplified further to get

∫

Ω(t)

1

J
∂ (JΨπW )

∂t

∣

∣

∣

∣

~ξ

dV +

∫

Ω(t)

∂ (ΨπHc
i)

∂xi

∣

∣

∣

∣

t

dV =

∫

Ω(t)

[ΨπS] dV +

∫

Ω(t)

[

H
lag
i

∂Ψπ

∂xi

∣

∣

∣

∣

t

]

dV (2.14)
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where the convective-flux terms have been combined using

Hc
i ≡ H i − ûiW

= (ui − ûi) W + P i

The final step is to perform the change of variables operation on the time-derivative

term from the fixed to the moving coordinates:

∫

Ωξ

∂ (JΨπW )

∂t

∣

∣

∣

∣

~ξ

dVξ +

∫

Ω(t)

∂ (ΨπHc
i)

∂xi

∣

∣

∣

∣

t

dV =

∫

Ω(t)

[ΨπS] dV +

∫

Ω(t)

[

H
lag
i

∂Ψπ

∂xi

∣

∣

∣

∣

t

]

dV (2.15)

In the form above, the volume integral for the time-derivative term is no longer

time-dependent. Therefore, the derivative can now be pulled outside the integral,

as desired.

2.1.5 Axisymmetric Formulation

The preceding sections derived the conservation equations using a three-

dimensional Cartesian coordinate system. Many geometries of interest can be

simplified using an axisymmetric invariance assumption. This section will define

this approximation and discuss it’s implementation in the current method.

The axisymmetric approximation begins with a mapping to a cylindrical polar

coordinate system. Any point in the Cartesian frame, ~x, can be denoted by the

associated cylindrical coordinates, ~̌x. Variables related to polar coordinates are

differentiated from the standard Cartesian variables by the (̌·) notation. Here,

x̌1 is the axial coordinate, x̌2 is the radial coordinate, and x̌3 is the angular

coordinate. The cylindrical coordinates are related to the Cartesian coordinates

by the equations (see [50])

x1 = x̌2 cos x̌3

x2 = x̌2 sin x̌3

x3 = x̌1
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and inversely

x̌1 = x3

x̌2 =
√

x2
1 + x2

2

x̌3 = tan−1

(

x2

x1

)

The axisymmetric assumption reduces the dimensionality of the system by

assuming that there is symmetry in the angular direction. Therefore, there is no

flow velocity and all the derivatives are zero in the angular (x̌3) direction. Note,

that due to the restriction on angular velocity, swirling flows are not considered

here. This results in a mapping to a lower dimensional space

[x1, x2, x3]
T ∈ R

3 → [x̌1, x̌2]
T ∈ R × R

+ = {x̌1 ∈ R, x̌2 ≥ 0}

The axisymmetric approximation and its application to conservation laws is

discussed in Guardone and Vigevano [51]. The axisymmetric form of the

conservation laws, (2.1)–(2.3), is given by

∂ (x̌2ρ)

∂t
+

∂ (x̌2 (ρǔj))

∂x̌j

= 0 (2.16)

∂ (x̌2ρǔi)

∂t
+

∂ (x̌2 (ρǔiǔj − σ̌ji))

∂x̌j

= −δi2σ̌33 (2.17)

∂ (x̌2ρE)

∂t
+

∂ (x̌2 (ρǔjE − σ̌jiǔi))

∂x̌j

= 0 (2.18)

where the velocity consists of an axial and radial component

~̌u =





ǔ1

ǔ2





and the stress tensor is

σ̌ =











σ̌11 σ̌12 0

σ̌21 σ̌22 0

0 0 σ̌33











and must maintain its rank of 3. This is to properly account for the ‘hoop stress’,

which is the non-zero normal stress in the out of plane (angular) direction, and

factors into the conservation of radial momentum (2.17).
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As was done with the Cartesian form of the conservation laws in §2.1.1, the

axisymmetric form of the laws can be represented as a tensor equation

∂W̌

∂t
+

∂Ȟ i

∂x̌i

= Š (2.19)

where

W̌ (~̌x, t) = x̌2























1/x̌2

ρ

ρǔ1

ρǔ2

ρE























Ȟ(~̌x, t) = x̌2





0 ρǔ1 ρǔ1ǔ1 − σ̌11 ρǔ1ǔ2 − σ̌21 ρǔ1E − σ̌1jǔj

0 ρǔ2 ρǔ2ǔ1 − σ̌12 ρǔ2ǔ2 − σ̌22 ρǔ2E − σ̌2jǔj





P̌ (~̌x, t) = x̌2





−ǔ1/x̌2 0 −σ̌11 −σ̌21 −σ1jǔj

−ǔ2/x̌2 0 −σ̌12 −σ̌22 −σ2jǔj





and

Š(~̌x, t) =























0

0

0

−σ̌33

0























The divergence term in (2.19) is the standard two-dimensional Cartesian divergence

operator in the axial plane. This is an important point, as it means that the above

system can be solve using the same methods employed to solve the standard planar

equations, without the need for modification to the divergence operation.

The DEM method can then be applied to the axisymmetric conservation laws.

Similar to the derivation in §2.1.3, (2.19) can be combined with the transport of

an indicator function,

∂Ψπ

∂t
+ ǔI

i

∂Ψπ

∂x̌i

= 0 (2.20)
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to obtain the governing equation for our material

∫

Ωξ

∂
(

JΨπW̌
)

∂t

∣

∣

∣

∣

∣

~̌ξ

dVξ +

∫

Ω(t)

∂
(

ΨπȞ
c

i

)

∂x̌i

∣

∣

∣

∣

∣

t

dV =

∫

Ω(t)

ΨπŠ dV +

∫

Ω(t)

Ȟ
lag

i

∂Ψπ

∂x̌i

∣

∣

∣

∣

t

dV (2.21)

This equation has identical form as (2.15). The difference is the modification of the

state vector and flux to include a dependence on radial position and the inclusion

of the additional source term. In practice the radius term is incorporated into the

volume and face area calculations.

2.1.6 Spatial Discretization

The discretization technique used here is based on the finite-volume method.

In this method, the computational domain is split into finite cells (Figure 2.1).

The governing equations are then solved over each computational cell using

approximations to the flow-field. General concepts associated with the finite-

volume method can be found in a number of texts, such as Hirsch [52] or Toro [53].

The current method considers each computational cell as a representative

multiphase control volume. Thus, each computational cell is further subdivided

into separate volumes occupied by each material constituent. These regions are

defined by the indicator function, Ψπ. Averages are taken over each cell, obtaining

algebraic relations for the flow variables. The averages are found by examining all

the contact surfaces within the cell and summing all of the interface contributions.

Notice that there is a fundamental difference between the current discretization

and the seven-equation model discussed in §2.1.2. The seven-equation model treats

each phase continuously. Thus, it is assumed both gas and particle material are

co-located at every point in space. A smoothly varying volume fraction determines

how much of each material is actually at each point. Therefore, there is no concept

of material interfaces within the computational cell or at the cell boundaries.

Within the DEM framework, each material is assumed to occupy its own space.

The material interfaces between phases are persistent. Another way to look at this
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is that the seven-equation model does it’s averaging at the global equation level,

while the DEM averages the mixture at the discrete level.

2.1.7 Numerical Integration of Terms

Previously, the conservation laws for the pure components of a multiphase mixture

were derived for a moving control volume, resulting in (2.15). This section will

proceed to develop the discrete form of the equation and discuss how to evaluate

each term. The numerical discretization follows Chinnayya et al. [22], while

extending the method to account for the moving control volume. Whereas the

original reference relied on a structured Cartesian mesh, the current description

is presented for arbitrary spatial decomposition, although in practice only 8-node

3D brick elements and 4-node 2D quadrilateral elements have been utilized.

First, decompose (2.15) such that

IT + IC = IS + IL (2.22)

with

IT =

∫

Ωξ

∂ (JΨπW )

∂t

∣

∣

∣

∣

~ξ

dVξ (2.23)

IC =

∫

Ω(t)

∂ (ΨπHc
i)

∂xi

∣

∣

∣

∣

t

dV (2.24)

IS =

∫

Ω(t)

ΨπS dV (2.25)

IL =

∫

Ω(t)

H
lag
i

∂Ψπ

∂xi

∣

∣

∣

∣

t

dV (2.26)

The above integrals will be computed numerically to form the discrete equations

for each phase.

As macroscopic representations of sub-scale phenomena will be formed, a

number of averaging procedures can be defined. Throughout this document,

the notation of an over-bar (·) will be used to indicate an averaged quantity.

Rather than complicate the nomenclature with distinct notation for each averaging

operation, this operator will be overloaded and used for many types of averages.
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The desired operation should be apparent within the context of its use. Some

commonly used averaging procedures are

Volume Average

f =
1

Ω

∫

Ω(t)

f dV

Surface Average

f =
1

S

∮

∂Ωf (t)

f dA

Phase-Volume Average

fπ =
1

Ωπ

∫

Ω(t)

Ψπf dV

=
1

Ωπ

∫

Ωπ(t)

f dV

The above averages use the cell volume

Ω ≡
∫

Ω(t)

dV

as well as the volume occupied by phase π within a grid cell, which is given as

Ωπ ≡
∫

Ω(t)

Ψπ dV

The volume fraction of phase π in a cell is defined as

απ =
Ωπ

Ω

and the mass fraction is defined as

xπ =

∫

Ω(t)
ρΨπ dV

∫

Ω(t)
ρ dV

where ρ is the material density.

2.1.7.1 Time Derivative Term

The first integral, IT , reads

IT =

∫

Ωξ

∂ (JΨπW )

∂t

∣

∣

∣

∣

~ξ

dVξ (2.27)
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Recalling that Ωξ is invariant with time, the time derivative may be pulled out of

the integral and simplified as

IT =
∂

∂t

[

∫

Ωξ

ΨπWJ dVξ

]

~ξ

(2.28)

=
∂

∂t

[∫

Ω(t)

ΨπW dV
]

~ξ

(2.29)

=
∂

∂t

(

ΩπW π

)

∣

∣

∣

∣

~ξ

(2.30)

=
∂

∂t

(

ΩαπW π

)

∣

∣

∣

∣

~ξ

(2.31)

where the over-bar indicates the phase-volume averaging operator. Further

discretization of this term depends on the time-stepping scheme used and will

be discussed in a later section.

2.1.7.2 Convective Term

The convective integral can be simplified by applying the divergence theorem

IC =

∫

Ω(t)

∂ (ΨπHc
i)

∂xi

∣

∣

∣

∣

t

dV (2.32)

=

∮

∂Ω(t)

ΨπHc
ini dA (2.33)

=

∮

∂Ω(t)

ΨπF c dA (2.34)

The outward normal is denoted ~n, and F c ≡ Hc
ini is the outward flux normal

to the surface. As the surface of the control volume is composed of a number of

distinct faces, the surface integral can be split into components over each face and

a surface average can be taken over the face

IC =
∑

f

∮

∂Ωf (t)

ΨπF c dA (2.35)

=
∑

f

[

SΨπF c
]

f
(2.36)

This can be further decomposed into phase contacts at the face surface

IC =
∑

f

[

∑

pq

(SΨ∗
πF c∗)pq

]

f

(2.37)
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where the subscripts indicate the contact surface between phase p and phase q

across face f . These phase contacts are defined as the surface of the material

interface between phases (See [22] for details). The contact surfaces are computed

from Table 2.1 and the indicator function is evaluated at the contact using

Table 2.2.

2.1.7.3 Source Term

The source term is handled by a simple integration over the cell.

IS =

∫

Ω(t)

ΨπS dV (2.38)

= ΩπSπ (2.39)

= ΩαπSπ (2.40)

Thus, single-point Gauss quadrature is used to evaluate the source term, where

the average value of the source, Sπ, is evaluated at the cell centroid.

2.1.7.4 Lagrangian/Non-conservative Source Term

The discretization of the Lagrangian source term will be addressed next,

IL =

∫

Ω(t)

H
lag
i

∂Ψπ

∂xi

∣

∣

∣

∣

t

dV (2.41)

Noting that Ψπ is constant over the phase, ∂Ψπ/∂x (and thus the above integral)

is only non-zero at the material or phase boundaries. In addition, H lag is uniform

within the phase. Therefore, if Σ is the surface defined by the union of all interfaces

between phases then the volume integral can be replaced by a surface integral over

the interface

IL =

∮

Σ(t)

[[Ψπ]] H lag
i ni dA (2.42)

=

∮

Σ(t)

[[Ψπ]] F lag dA (2.43)

where [[Ψπ]] is the jump in the normal direction across the interface, and the

normal flux is given by F lag ≡ H
lag
i ni. The unit normal in these equations is

defined pointing outward from phase π into the other phase.
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Note that this term is very different from the convective-flux term, IC . In the

convective term, the divergence theorem was applied resulting in a conservative

flux which was passed across the cell boundaries from one cell to another. In

the evaluation of the Lagrangian term, IL, the divergence theorem has not been

employed, rather the integral reduces to a surface integral over all contacts within

the cell and on its boundary. This results in a non-conservative flux which does

not pass between cells, but rather passes from one phase to another within the

same cell. Thus from an algorithmic standpoint, the convective flux is face-based,

while the Lagrangian flux is cell-based.

To evaluate the above term, the surface integral is broken up into boundary,

internal, and numerical components.

IL =

∮

Σboundary(t)

[[Ψπ]] F lag dA +

∮

Σinternal(t)

[[Ψπ]] F lag dA +

∮

Σnumerical(t)

[[Ψπ]] F lag dA (2.44)

= Iboundary
L + I internal

L + Inumerical
L (2.45)

The boundary terms result from material interfaces located at the cell

boundaries which arise due to variation in volume fraction between cells. Thus,

this term can be decomposed into integrals over each face of the cell, and then

further decomposed by each individual phase contact surface.

Iboundary
L =

∮

Σboundary(t)

[[Ψπ]] F lag dA (2.46)

=

∮

∂Ω(t)

[[Ψπ]] F lag dA (2.47)

=
∑

f

∮

∂Ωf (t)

[[Ψπ]] F lag dA (2.48)

=
∑

f

[

S[[Ψπ]] F lag
]

f
(2.49)

=
∑

f

[

∑

pq

(

S [[Ψπ]]∗ F lag∗
)

pq

]

f

(2.50)
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where the jumps in the indicator function are evaluated at the contact using

Table 2.3.

The internal terms result from material interfaces within the cell. As these

interfaces are not adequately resolved at the scale of the mesh, they require some

kind of sub-grid model to define them. Calculation of these terms directly is

discussed in Chinnayya et al. [22]. However, in practice it is found that these

terms act as a type of relaxation process, and that is how the current method

evaluates them.

I internal
L → relaxation process (2.51)

The relaxation process used to approximate these terms is discussed in more detail

in a later section.

Finally, the numerical term arises due to specifics in the numerical scheme.

Specifically, it is due to the higher-order extensions to the method, which will be

discussed in a later section. For the higher-order methods the material state is not

assumed to be constant within the computational cell. Thus, numerical interfaces

have been introduced which must be accounted for. This is discussed in Abgrall

and Saurel [20] and results in a term which is similar to the boundary term, but

evaluated within the cell at the numerical interface.

Inumerical
L =

[

∑

pq

(

S [[Ψπ]]∗ F lag∗
)

pq

]

H.O.

(2.52)

2.1.8 Continuous Limit of Discrete Equations

As derived in the previous sections, the DEM provides an elegant framework for

analyzing multiphase mixtures. Yet, the governing equations (2.15) only make

sense at a discrete level. Often it is instructive to analyze a computational model

at the differential level in order to understand the model structure and properties.

Chinnayya et al. [22] derived a continuous analogue of the DEM, resulting in a

system of partial differential equations. For a two-phase gas-particle mixture these
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equations are given in a one-dimensional fixed reference frame by

∂(αg)

∂t
= −uI ∂(αg)

∂x
− µ (pp − pg)

∂(αgρg)

∂t
+ ∂(αgρgug)

∂x
= 0

∂(αgρgug)

∂t
+ ∂(αgρgugug+αgpg)

∂x
= pI ∂(αg)

∂x
+ λ (up − ug)

∂(αgρgEg)

∂t
+ ∂(αgρgEgug+αgpgug)

∂x
= pIuI ∂(αg)

∂x
+ µpI (pp − pg) + λuI (up − ug)

∂(αpρp)

∂t
+ ∂(αpρpup)

∂x
= 0

∂(αpρpup)

∂t
+ ∂(αpρpupup+αppp)

∂x
= −pI ∂(αg)

∂x
− λ (up − ug)

∂(αpρpEp)

∂t
+ ∂(αpρpEpup+αpppup)

∂x
=−pIuI ∂(αg)

∂x
−µpI (pp − pg)−λuI (up − ug)

(2.53)

where α is the phase volume fraction and the subscripts g and p indicate the flow

variable is associated with the gas or particle phase respectively. The equations

were obtained by taking the continuous limit of the discrete form of (2.15) as the

time-step and spatial volume tend towards zero.

The constants on the right hand side of (2.53) come directly from applying the

limiting process to the non-conservative terms (2.26). The resulting constants are

functions of a characteristic surface area, s, and the acoustic impedance of the

phase, given by Z = (ρc) where ρ and c are the density and sound speed of the

phase respectively. The pressure and velocity relaxation coefficients are

µ =
s

Zg + Zp

λ =
sZgZp

2(Zg + Zp)

respectively. The interface pressure and velocity are derived as

pI =
Zppg + Zgpp

Zg + Zp

± ZgZp (up − ug)

Zg + Zp

(2.54)

uI =
Zgug + Zpup

Zg + Zp

± (pp − pg)

Zg + Zp

where the sign of the ± operator is determined from the sign of the volume

fraction gradient, ∂αg

∂x
. Notice that the form of the above coefficients are a

direct consequence of Chinnayya’s choice to use the acoustic Riemann solver

approximation (see [53]).
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It is observed that the form of (2.53) is identical to the seven-equation

model (2.5). The difference lies in the expressions for the constants on the right

hand side. For the continuous limit of the DEM, the analytic expressions for

the constants are consequences of the limiting process and are therefore implicitly

defined by the method. The constants used in the seven-equation model, however,

must be determined through a closure model, as discussed in §2.1.2.

It is noticed that for Zp ≫ Zg and assuming that the differences in the phase

velocities and pressures are much smaller than their magnitude, then the interface

values (2.54) reduce to the values used in the BN model (2.6). These conditions

are reasonably represented within dilute gas-particle flows, but are not valid for

detonation waves where the acoustic impedances are of the same order.

The system (2.53) can be expressed in terms of primitive variables

∂wπ

∂t
+ aπ

∂wπ

∂x
= sπ (2.55)

where the subscript π can be either g or p for the gas or particle phase respectively.

The vector of primitive variables is defined as

wπ =

















α

ρ

u

p

















(2.56)

and sπ represents the source term. The Jacobian matrix is given by

aπ =

















uI 0 0 0

ρπ

απ
(uπ − uI) uπ ρπ 0

pπ−pI

απρπ
0 uπ

1
ρπ

ρπ(cI)2

απ
(uπ − uI) 0 ρπc2

π uπ

















(2.57)

where cI is an interface sound speed.

Chinnayya et al. [22] provides detailed mathematical analysis of the continuous

limit of the DEM equations. They show that the eigenvalues of the characteristic
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matrix, aπ, are uI , uπ, (uπ + cπ), and (uπ − cπ). Since all eigenvalues are real,

the system is always hyperbolic. In addition, it is observed that the system is

conservative with respect to the mixture. Chinnayya also shows that the entropies

of the phases are always non-decreasing, thus the system satisfies the second law

of thermodynamics.

2.1.9 Time-stepping Scheme

Using the discretization techniques discussed in §2.1.7, (2.22) can be rearranged

as

IT = −IC + IS + Iboundary
L + Inumerical

L + I internal
L = R(t) (2.58)

where R(t) represents the combined right hand side (RHS). After the spatial

discretization, R is a function only of time. Therefore, along with (2.31), the

system is represented by the ODE

d

dt

(

ΩαπW π

)

= R(t) (2.59)

which is solved for each grid cell.

As seen in (2.51), the terms associated with internal contacts (I internal
L ) are

not computed directly, but are rather represented using a sub-grid relaxation

model. These relaxation processes are handled using a Strang-type operator-split

approach [54]. Therefore, the RHS is split

R(t) = Rtransport(t) + Rrelax(t) (2.60)

where Rtransport and Rrelax represent the contributions from the hydrodynamic

transport and relaxation components respectively.

The hydrodynamic transport terms are computed first. A number of choices

are possible for discretizing the temporal derivative. The current method uses a

leap-frog type time-stepping scheme

(

ΩαπW π

)(n+1)∗ −
(

ΩαπW π

)n

∆t
=
(

Rtransport
)n+ 1

2 (2.61)
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where the time-step size is given by ∆t = tn+1 − tn. The superscripts in (2.61)

indicate that the given quantity is evaluated at the specified time level. The

(n+1)∗ term designates that the quantities have only been updated to account for

the transport terms and must still be updated for the relaxation processes. The

RHS is evaluated at the mid-level of the time-step, tn+ 1

2 = (tn+1+tn)/2. Advancing

the material state to tn+ 1

2 is discussed later in §2.1.13. The leap-frog scheme is

formally second-order accurate for constant time-steps. If the RHS is evaluated at

the old time level, tn, then this scheme reduces to the forward Euler time-stepping

scheme and the order of accuracy is reduced to first order.

Once the hydrodynamic transport has been integrated, the state can be

updated to account for relaxation processes. Thus,

(

ΩαπW π

)(n+1) −
(

ΩαπW π

)(n+1)∗

∆t
=
(

Rrelax
)

(2.62)

is solved, where the (n + 1) superscript notates the final state at the end of the

time-step. The RHS is evaluated using the state at the end of the transport update.

The evaluation of the relaxation terms is first-order in time. Details of this step

are discussed later in §2.1.14.

2.1.9.1 Time-stepping Stability

The evaluation of the transport equations consists of evaluating Riemann problems

between the phase contacts on the cell boundaries. Thus, the time-stepping scheme

behaves like a Godunov-type method. Therefore, the stability constraint on the

time-step size is given by

∆t

∆x
max

π
(|uπ| + cπ) ≤ 1 (2.63)

where the maximum is evaluated over the states of all phases. Here, ∆x is taken as

a characteristic length of the cell. This constraint ensures that the waves coming

from each face do not cross the opposite cell boundaries. A more detailed analysis

of this constraint is found in Chinnayya et al. [22].
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2.1.10 Geometric Conservation Laws

When constructing a numerical scheme, care must be taken that the geometric

quantities are computed consistently with the underlying mathematics. This is

especially important for ALE computations using moving and/or deforming grids.

To ensure that the conservation property of the equations is not violated, the

geometric conservation laws (GCLs) [30–35] must be satisfied along with the

governing set of equations. Actually, the GCLs are implicitly coupled to the

conservation equations as they can be derived using simplifying assumptions for

the flow. The GCLs are composed of two laws dealing with surface and volume

effects, which will be discussed separately.

The surface conservation law (SCL) is obtained by assuming a uniform flow on

a non-moving mesh. It is expressed in continuous form as

∮

∂Ω(t)

ni dA = 0 (2.64)

and simply states that the control volume must be surrounded by a closed

boundary. This is a fundamental mathematical property that was required for

use of the divergence theorem in the derivation of the flux form of the equations.

Note that this is not dependent on a moving control volume in any way. Thus, the

SCL must be satisfied for computations on static as well as dynamic meshes.

Subdividing the cell boundary into sub-surfaces (or faces), a discrete

representation of the SCL is obtained by summing over all faces, f , surrounding

the computational cell, such that

∑

f

(

Sni

)

f
= 0 (2.65)

from which the requirements for the definition of the numerical representation of

the surface vectors is obtained. It is essential that the SCL is satisfied when defining

the discrete representation of the surface areas (S) and normal vectors (n). This is

fairly trivial when dealing with planar face geometries, for example straight lines

for 2D elements or triangular faces for 3D tetrahedral elements, because the area



35

and normal vectors can be computed exactly, such that ni(~x, t) = ni. However, for

non-planar face geometries, like the quadrilateral faces associated with 3D brick

elements, this can be a little more complicated since the continuous normal vector

varies along the face, such that ni(~x, t) 6= ni. Thus, the SCL is intimately related

to the definition of faces. The reader is referred to Zhang et al. [34] for a more

detailed description of the SCL.

The other GCL, referred to as the volume conservation law (VCL), is given by

∂Ωc

∂t

∣

∣

∣

∣

~ξ

−
∮

∂Ω(t)

ûini dA = 0 (2.66)

which states that as a control volume moves through space its change in volume

is equal to the volume swept out by the moving boundary. The discrete

representation is

∆Ωn+1 = Ωn+1 − Ωn = ∆t
∑

f

(

Sûn

)n+ 1

2

f
(2.67)

which states that during a time-step, the total increase in volume for a

computational cell is equal to the sum of the volume flux across the faces.

Evaluation of the right hand side terms must be determined from the underlying

time-stepping algorithm for the flow solver. Here, the time level
{

n + 1
2

}

is used

in order to be consistent with the leap-frog time-stepping scheme (2.61).

Notice that error has been introduced into the solution at this point. In the

integral equation (2.66) the normal mesh velocity, ûini, is a function of time as well

as the spatial location along the boundary. Hence it accounts for the actual variable

translation, rotation, and deformation of the surrounding boundary. In the discrete

equation (2.67), the normal velocity has been replaced by an average normal mesh

velocity, ûn, which is constant over the time-step. This approximation does not

account for rotation or deformation of the face. This is fundamentally where

the problem lies. The Riemann solution used to approximate the convective flux

requires that the reference frame is moving with a single constant velocity. This is

because the Riemann problem is a 1D solution of the conservation laws, projected
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along the normal vector. However, if the normal vector does not point in a constant

direction, i.e. the face rotates, then this is no longer a 1D problem. Rather than

trying to find a solution to the Riemann problem in a rotating reference frame,

it is assumed that the face translates in a constant direction, and the geometric

approximations are chosen to be consistent with (2.67).

One way to satisfy the VCL is to compute the volume, Ωn+1, using (2.67).

However, after many time-steps, this computed volume could drift significantly

from the actual geometrically computed cell volume based on the cell coordinates.

Thus, it is more desirable to use the actual geometric cell volume and modify the

parameters on the right hand side of (2.67) to obtain consistency.

Start by looking at an individual face f . Define the face volume flux, ∆Ωn+1
f ,

as the geometric volume swept out by the motion of the face between time tn and

time tn+1. A graphical representation of this is shown in Figure 2.2. From purely

geometrical arguments, one can show that

∆Ωn+1 =
∑

f

∆Ωn+1
f

where the cell volume and the face volume fluxes are computed exactly using

the definition of the cell geometry. Intuitively, one can combine this definition

with (2.67) to obtain

∆Ωn+1
f = ∆t

(

Sûn

)n+ 1

2

f
(2.68)

A number of paths can be followed from here. For 1D problems, Smith [30] picked

the time-step level for which to evaluate the surface area in order to be consistent.

Lesoinne and Farhat [31], subdivided cell faces into triangular sub-faces to be

consistent. The approach taken here is to compute the normal mesh velocity

based on the geometric volume flux, such that

(

ûn

)gcl

f
=

∆Ωn+1
f

S
n+ 1

2

f ∆t
(2.69)

Note that the time level has been replaced by the superscript gcl to indicate that

the normal velocity is not computed at the time level consistent with the other
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variables, but rather at a state consistent with the GCL. Computing the normal

velocity from (2.69) gives a consistent 1D representation of the mesh motion for

the flux calculation. This is the same normal velocity used in Vorobiev et al. [55].

Figure 2.3 shows the importance of obeying the GCLs. The figure shows the

computed density of a uniform, zero-velocity flow. Initially, in Figure 2.3(a),

the mesh is Cartesian and the density is at a constant value, indicated by the

constant green coloring. After the time-step, the mesh has moved to a new location.

Figure 2.3(b) shows the results obtained using surface areas and normals naively

taken from the beginning of the time-step. Note that the density is no longer

uniform throughout the geometry, indicated by the red, green, and blue shading of

the cells. Thus the mesh motion results in a non-physical mass flux between cells.

Figure 2.3(c) shows the results of the same calculation using a GCL consistent

mesh velocity obtained from (2.69). Here the correct, constant density result is

computed. Thus, failure to properly account for the GCLs can have large impacts

on the quality of the computed solution.

As a side note, issues with the GCLs are generally handled implicitly in

Lagrange-Remap ALE schemes. In the direct-ALE scheme discussed here, the

Lagrange flux and convective flux are coupled together, thus requiring the same

surface area and normals to be used for each. In the remap approach, the advective

flux is generally computed directly from the volume flux, thus solving (2.69)

automatically. This is possible because the Lagrange and convective fluxes are

decoupled allowing the geometric quantities to be computed differently for each

operation.

2.1.11 Flux Calculation

The evaluation of the discrete convective (2.37) and Lagrangian (2.50) terms

requires the computation of single-phase fluxes at cell boundaries. These fluxes

must be evaluated at inter-phase contacts as well as contacts between differing

phases. These fluxes are obtained by solving the Riemann problem [53]. The

original Godunov [56] method used an exact Riemann solver for gas dynamics
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using an ideal-gas equation of state. However, for more complex material equations,

exact solvers are often not available. Fortunately, approximate Riemann solvers

are available and capable of achieving the desired level of accuracy.

The Riemann problem is an initial value problem consisting of a

conservation law together with piecewise-constant initial conditions having a single

discontinuity. For the one-dimensional Euler equations, the Riemann problem is

given by

∂W

∂t
+

∂F

∂x
= 0 (2.70)

where W and F are the one-dimensional analogues to the state and flux tensors

used in (2.4). The initial conditions are

W (x, 0) =











W L if (x < 0)

W R if (x > 0)

(2.71)

where the subscripts L and R designate the states on the left and right of the

initial discontinuity located at x = 0. Solving the Riemann problem is done by a

similarity solution

W (x, t) = W (x/t) (2.72)

as depicted in Figure 2.4. The structure of the solution consists of four constant

states (W L, W ∗
L, W ∗

R, and W R) separated by three waves corresponding to the

eigenvalues of the PDE ((u−c), u, and (u+c)). The waves on the left and right can

be either rarefaction waves or shock waves. The center wave is always a contact

discontinuity which moves with the material velocity.

The Acoustic Riemann Solver

Obtaining the Riemann solution requires the determination of the star state

between the waves, W ∗
L and W ∗

R. It is noted that the pressure and velocity on

each side of the contact wave are equal to each other (p∗L = p∗R, u∗
L = u∗

R), while

the densities are different (ρ∗
L 6= ρ∗

R). Therefore, the pressure and velocity in the

middle of the waves are represented by the singular values p∗ and u∗.
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Exact solutions for the star state are only available for simplified equations

of state. Therefore, the current method employs a linearized solution commonly

referred to as the acoustic Riemann solver [53, 57]. Integrating along the (u + c)

and (u − c) characteristics results in

p∗ = pL + ZL (unL − u∗) (2.73)

p∗ = pR + ZR (u∗ − unR) (2.74)

where the subscripts L and R indicate that the quantities are obtained from the

left and right states as defined by the initial conditions (2.71). The velocity is

designated as un to indicate that it is taken in the direction normal to the interface.

The acoustic impedance of the material is given by Z = (ρc), where c is the sound

speed. Combining (2.73) and (2.74) and solving for u∗ gives

u∗ =
ZLunL + ZRunR + (pL − pR)

ZL + ZR

(2.75)

The pressure is found by taking the average of (2.73) and (2.74) and using (2.75)

p∗ =
1

2
[pL + pR + ZL (unL − u∗) + ZR (u∗ − unR)]

=
ZRpL + ZLpR + ZLZR (unL − unR)

ZL + ZR

(2.76)

The AUFS Flux

After using the acoustic solution to determine the star state, the full flux vector

can be determined. The current methodology requires a convective flux when

evaluating (2.37) and a Lagrangian flux when evaluating (2.50). These fluxes are

calculated by the Artificially Upstream Flux-vector Splitting (AUFS) scheme of

Sun and Takayama [58].

The numerical scheme is implemented using the finite-volume method for a

moving unstructured grid system where cell boundaries are not necessarily oriented

along coordinate directions. Therefore, the flux must be evaluated in an arbitrary

direction. In addition, the mesh is allowed to move. Thus, the flux must be

evaluated with respect to a moving frame. Thus, the governing equations (2.4) are
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transformed as

∂W

∂t

∣

∣

∣

∣

~ξ

+
∂F c

∂n

∣

∣

∣

∣

t

= 0 (2.77)

where ∂F
c

∂n
is the directional derivative in the direction of the unit normal ~n. As

before, the state tensor is given by

W =





























1

ρ

ρu1

ρu2

ρu3

ρE





























and the normal convective flux is

F c = (un − ûn)W + F lag (2.78)

where the Lagrangian flux is

F lag =





























−un

0

n1p

n2p

n3p

pun





























and the normal velocity is defined by un = niui. The mesh velocity, ûn, is computed

with (2.69). Note that unlike (2.4), the above equations use the pressure rather

than the full stress tensor since materials with strength are not considered here.

A description of the flux calculation for materials that have strength is found in

Knap et al. [59].

The convective flux has been decomposed into a sum of an advective and a

Lagrangian component in (2.78). The AUFS technique uses this decomposition
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and further breaks up the flux as

F c = (1 − M)F c
1 + (M)F c

2 (2.79)

with

F c
1 = (un − ûn − s1)W + F lag

F c
2 = (un − ûn − s2)W + F lag

M =
s1

s1 − s2

where s1 and s2 are artificial wave speeds. A number of variations on the AUFS

solver can be obtained by the choice of these constants. The choice advocated by

the original AUFS article was to set s1 equal to the material velocity in order to

resolve contact discontinuities. That choice has been modified here to account for

the moving grid, such that

s1 = (un − ûn)

s2 =











(un − ûn) − c if (s1 > 0)

(un − ûn) + c if (s1 ≤ 0)

for which F c
1 becomes equal to the Lagrangian flux.

To compute the numerical fluxes, an algorithm must be provided to compute

the wave speeds. The original AUFS proposal used average values from the initial

left and right states to approximate s1 and s2. The current technique is to use the

results of the acoustic Riemann solver. Thus,

s1 = (u∗ − ûn)

is used for the wave speed and

F c
1 = F lag =





























−u∗

0

n1p
∗

n2p
∗

n3p
∗

p∗u∗




























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is the computed Lagrangian flux. The calculation of the other wave speed depends

on whether material is flowing to the left or to the right. For the case when

(s1 ≥ 0), the flux is determined as

s2 = min
(

0, min
(

(unL − ûn), (unR − ûn)
)

− max
(

cL, cR

)

)

F c
2 =





























1(unL − ûn − s2) − unL

ρL(unL − ûn − s2)

ρLu1L(unL − ûn − s2) + n1pL

ρLu2L(unL − ûn − s2) + n2pL

ρLu3L(unL − ûn − s2) + n3pL

ρLEL(unL − ûn − s2) + unLpL





























and if (s1 < 0), then

s2 = max
(

0, max
(

(unL − ûn), (unR − ûn)
)

+ max
(

cL, cR

)

)

F c
2 =





























1(unR − ûn − s2) − unR

ρR(unR − ûn − s2)

ρRu1R(unR − ûn − s2) + n1pR

ρRu2R(unR − ûn − s2) + n2pR

ρRu3R(unR − ûn − s2) + n3pR

ρRER(unR − ûn − s2) + unRpR





























These values are then used to compute the normal flux using (2.79).

2.1.12 Boundary Conditions

Because infinitely large systems cannot be considered, the spatial domain must be

truncated to include only the portion of interest. Therefore, special treatment is

required at the domain boundaries. The current capability provides treatment for

outflow and wall boundary conditions.

Boundary conditions for finite-volume methods on unstructured meshes have

been discussed extensively in the literature for compressible single-phase flows,
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e.g. [53, 60–62]. Berry et al. [63] has a detailed discussion of boundary conditions

within the context of DEM. The above references discuss the importance of proper

boundary conditions for hyperbolic systems. In order for a simulation to be well-

posed, it is critical that the boundaries properly account for the propagation

of waves. Outward propagating waves are completely determined by the flow

inside the domain, and no boundary conditions can be specified for them. Inward

propagating waves, on the other hand, are completely determined by the conditions

outside the domain and must be prescribed by boundary conditions. For the DEM,

boundary conditions are applied to each phase individually. Therefore, in order for

the method to be well-posed, the boundary conditions must meet the same criteria

as the original Euler equations.

2.1.12.1 Outflow Boundary Conditions

The outflow boundary condition is used to model far-field boundaries. These

boundaries are placed on the edges of the finite domain, across which fluid is

allowed to flow. They are characterized by no flow gradients normal to the

boundary. This is enforced by assuming that a ghost cell exists on the exterior of

the domain with the exact same flow properties as the adjacent cell on the interior.

This results in

u∗ = unL

p∗ = pL (2.80)

where the L state is assumed to be on the interior. The above expressions for u∗ and

p∗ replace the contact velocity and pressure given by (2.75) and (2.76) in the flux

calculation. This condition is often referred to as a supersonic outflow condition

since information outside the domain cannot influence the state inside. The current

implementation uses this condition for both supersonic and subsonic flow. This

constrains the boundary such that there are no incoming waves. An enhancement

would be to allow a static pressure specification for the case of subsonic outflow,

similar to the formulation of Berry et al. [63].
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2.1.12.2 Wall Boundary Conditions

The wall boundary condition is used for situations where flow is not allowed to

cross the boundary. This condition is often referred to as a slip-wall boundary

since material is allowed to slip past the wall in the tangential direction. It is

used for external boundaries representing rigid walls, which can be stationary or

moving. It can also be used to represent a symmetry plane.

The boundary is enforced by solving a Riemann problem in order to determine

the flux. Since no material is allowed to pass through the boundary, the only flux

is from the momentum equation in the form of pressure. The contact velocity

is prescribed by the boundary condition. Thus, the pressure of the wall can be

computed by doing a one-sided Riemann solve using (2.73) to get

u∗ = ûn

p∗ = pL + ZL (unL − u∗) (2.81)

where the L state is assumed to be on the interior. The normal mesh velocity, ûn,

is computed with (2.69) based on the prescribed nodal velocities.

The above condition is similar to the one used by Liou [64], which was derived

by integrating the characteristic equation. Liou found that a regular extrapolation

condition (p∗ = pL) resulted in short-wave oscillations when shocks reflect off the

boundary. The technique used above eliminates those oscillations.

This boundary condition is the same one used at Lagrangian boundaries

between the fluid and deforming structure. This coupling will be discussed in

more detail in a later section.

2.1.13 Second-Order Extension

The solver has been implemented in the context of a traditional MUSCL-Hancock

predictor-corrector scheme to achieve second-order accuracy in both time and

space. See Toro [53] for a discussion of these types of methods. A primitive

variable formulation is used to extrapolate data from the cell centers to the faces.

It also advances the solution in time to the mid-level of the time-step. This is
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the predictor. The corrector step performs a Riemann solve using these predicted

values for the left and right states.

The predictor follows the methodology of Sun and Takayama [58]. To simplify

the description of the method, the one-dimensional form of the equations will be

presented. The technique can be readily extended to three dimensions. Recalling

the primitive variable vector (2.56), the values at the faces are computed by setting

w
n+ 1

2

f = wn
c +

∆t

2

(

∂w

∂t

)n

c

+
(

x
n+ 1

2

f − xn
c

)

(

∂w

∂x

)n

c

(2.82)

where the subscript f indicates that the variable is evaluated at the cell face, while

c designates evaluation at the cell centroid. The superscripts indicate that the

values are evaluated at time-level n or
(

n + 1
2

)

.

Recall that the mesh moves in the current method. Therefore, it is observed

that the spatial location of the face, to which the data is being extrapolated, varies

with time. Thus, the face’s location is evaluated at time
(

n + 1
2

)

, which can be

computed as

x
n+ 1

2

f = xn
f +

∆t

2
ûf

with the mesh velocity ûf being computed with (2.69). Therefore, the extrapolated

coordinate vector is given by

(

x
n+ 1

2

f − xn
c

)

=
(∆x)n

c

2
+

∆t

2
ûf (2.83)

where ∆x is the distance between opposite faces of the cell evaluated at the

beginning of the time-step.

Recalling (2.55), the time derivative is given by

∂w

∂t
= −a

∂w

∂x
+ s

= −u
∂w

∂x
− aoff ∂w

∂x
+ s (2.84)

where aoff = (a − uI) consists of the off-diagonal terms of matrix a. Notice that

the time derivative is taken with respect to the fixed coordinate system rather
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then the moving coordinate system associated with the mesh. This is the required

reference frame since (2.82) was derived with the time derivative evaluated at the

fixed spatial position of xn
c . Thus, no contributions from the mesh motion are

required in the above expression.

Inserting expressions (2.83) and (2.84) into (2.82) yields

w
n+ 1

2

f = wn
c +

(

∆x

2
− ∆t

2
(uc − ûf )

)(

∂w

∂x

)n

c

+
∆t

2

(

aoff

(

∂w

∂x

)n

c

+ s

)

(2.85)

where the gradient terms have been merged and the interpolation to the faces has

been combined with the evaluation of the advection terms. A simplified form of

the above predictor is

w
n+ 1

2

f = wn
c +

(

∆x

2
− ∆t

2
(uc − ûf )

)(

∂w

∂x

)n

c

(2.86)

where the off-diagonal and source terms have been neglected. This modification

has proved to be very robust and computationally efficient. It is still second order

with respect to advection and improves the accuracy of the material transport,

compared with the first-order method. The inclusion of the off-diagonal and source

terms was investigated, but it was found that they did not have a noticeable

effect on the method’s accuracy for any of the attempted calculations. Also, the

discretization of these terms is ambiguous because it requires an approximation of

the interface velocity and pressure, and it is not clear how to compute these values

consistently with DEM. Thus, the form (2.86) is used throughout this study.

It is well understood that second-order linear schemes will produce spurious

oscillations near discontinuities (see Toro [53] for discussion). It is desired to find

monotone solutions with no oscillations while still attaining second-order accuracy

in regions of smooth flow variations. Therefore, non-linear schemes must be used.

This is accomplished through the use of van Leer-type slope limiters in the current

methodology. The limiter is applied to the gradient term, ∂w

∂x
, in (2.86). The use

of slope limiters is discussed in Toro [53], Berger et al. [65], and Barth [66].
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The evaluation of the gradient within a computational cell will use the grid

stencil shown in Figure 2.5. Dimensional splitting is employed for computing the

gradient, such that the horizontal and vertical gradients are computed sequentially.

The gradient for cell c in the horizontal direction is calculated by first computing

the change in the variable across the cell. This is given by

△wce =
Ωeφe + Ωcφc

Ωe + Ωc

− Ωwφw + Ωcφc

Ωw + Ωc

(2.87)

where φ represents a component of the primitive variable vector w and Ω is the

volume of the cell. The c subscript indicates that the quantity is associated with the

center cell c, while the subscripts w and e indicate that the quantity is associated

with the neighbor cell in the west and east directions respectively. The above

expression uses a volume-weighted average to approximate the change in φ in

the west-east direction. For uniform meshes, the above approximation will exactly

reproduce linear gradients, but for stretched meshes the approximation is not exact.

This error will always underestimate the slope. Thus, the approximation will add

additional diffusion, but the solution will remain monotonic.

Next the changes across the faces are computed

swc =
φc − φw

△wce

(2.88)

sce =
φe − φc

△wce

(2.89)

where swc and sce are the relative jumps across the w-c face and the c-e face

respectively. These values are then used to compute a scale factor

L =











0 if (swc · sce < 0)

max (0, min (swc, sce, 1)) otherwise.

(2.90)

which acts as the slope limiter. The final slope is given by

∂φ

∂x
=

L△wce

∆x
(2.91)

where the bar over the gradient is a reminder that a slope limiter has been applied.
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This limited slope is then used in (2.86) to determine the values of φ at

the east and west faces. The same technique is subsequently applied in the

vertical direction to get the values on the north and south faces, as well as in the

out-of-plane direction for three-dimensional problems. The directional splitting

approach requires the use of three-dimensional hex elements or two-dimensional

quad elements. Techniques for general element formulations are discussed in Berger

et al. [65].

2.1.14 Sub-grid Phase Coupling (Relaxation Processes)

This section discusses the sub-grid coupling between phases. These interactions

are often referred to as relaxation processes. These terms are included to account

for interactions between phases which are not well resolved within the spatial

and temporal discretization. Therefore, these phenomena are accounted for with

engineering models.

The discussion begins with descriptions of the models. First is a discussion of

pressure relaxation (§2.1.14.1), which accounts for mechanical compression of the

phases. This is followed by temperature relaxation (§2.1.14.2), or heat transfer.

Finally, the drag model, or velocity relaxation (§2.1.14.3), is explained. At the end

is a summary of the relaxation models, including some details about the solution

strategy.

2.1.14.1 Pressure Relaxation

Consider a compressible solid particle embedded within a carrier gas. Pressure

differences between the two phases will initiate relaxation waves which propagate

from the particle surface to the center of the particle, then reflect back to the

surface. These waves cause the solid and gas to compress or expand in a struggle

to balance the mechanical force acting at the particle surface. This process will

edge the phases towards equilibrium. This process is exhibited in the conservation
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equations (2.5). Isolating the relevant terms results in

∂ (αg)

∂t
= −µ (pp − pg)

∂ (αgρg)

∂t
= 0

∂ (αgρgug)

∂t
= 0

∂ (αgρgEg)

∂t
= µpI (pp − pg)

∂ (αpρp)

∂t
= 0

∂ (αpρpup)

∂t
= 0

∂ (αpρpEp)

∂t
= −µpI (pp − pg)

Combining the first and forth equations results in

∂ (αgρgEg)

∂t
= −pI ∂αg

∂t

As seen in the second and third equations, the mass and momentum are constant.

Therefore, obtaining
∂εg

∂t
= − pI

αgρg

∂αg

∂t

which relates the change in internal energy to the volume change due to the pressure

work done on the gas. A similar expression can be obtained for the quantities

associated with the particles.

Chinnayya et al. [22] estimates a relaxation time scale for the pressures to

equilibrate as

τP ∼ dp

cp

where dp is the particle diameter and cp is the sound speed of the particle. The

pressure-relaxation time scale is generally much smaller than the time scales

associated with velocity and temperature. In addition, for particle sizes much

smaller than the computational cells used for the discretization of the transport

equations, the pressure-relaxation time scale is less than the Courant-limited time-

steps given by (2.63). Thus, it is generally acceptable to assume that the phases

are in pressure equilibrium.



50

Therefore, the pressure-relaxation model adjusts the volume fractions of the

phases until mechanical equilibrium is reached. A number of pressure-equilibrium

models are discussed in the literature (e.g. [57, 67]). The current technique is

based on the method of Tipton [68]. This is an iterative technique and is robust

for general equations of state.

Discussion of Particle Compaction

Under certain conditions pressure equilibrium is not appropriate. When

multiphase mixtures are subjected to mechanical loading, the mixture is

compressed. For dilute particle flows, the majority of the compression occurs

within the gas phase, i.e. the volume occupied by the gas decreases while the

volume of the particles is relatively unchanged. As the loading increases, the gas

volume decreases, resulting in less space between particles. Eventually the particles

will contact each other, preventing full compression of the material. At this point,

resistance to the applied loading is no longer dominated by gas pressure, but

rather inter-particle stresses caused by particle-particle interactions. This inter-

particle stress is referred to as the compaction stress. This added stress results

in non-equilibrium between the gas and particle pressures. Many researchers have

discussed the importance of compaction on multiphase dynamics [18, 69–71].

At this time compaction is not included in the current study. However,

its future implementation is straightforward. Basically a compaction model (as

discussed in the above references) provides a configurational pressure, βp, that

accounts for particle-particle interaction. This added pressure is then used as an

offset within the pressure-relaxation algorithm. Thus, the end state is not pressure

equilibrium, but rather a state where pp − βp − pg is zero.

2.1.14.2 Temperature Relaxation

The temperature-relaxation module accounts for heat transfer between phases.

Consider an isolated discrete particle embedded within a continuum fluid. When a

temperature difference exists between the particle and the fluid, heat transfer will

occur at the material interface going from the hot to the cold material. The heat
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flux at the particle surface (qw) is defined as the heat transfer from the particle to

the surrounding fluid divided by the surface area of the discrete particle (Ap). This

can be related to the change in temperature of the particle through conservation

of energy

−Apqw =
dEp

dt
= mpCvp

dTp

dt

where Ep is the extensive thermal energy of the discrete phase. It has been assumed

that the mass (mp) of the particle does not vary during the temperature relaxation

step. Therefore, any mass transfer and the associated energy exchange due to

chemical reactions or evaporation (both of which are neglected in the current study)

would need to be accounted for by the chemistry model. The specific heat (Cvp)

can be a function of temperature, and it is outside the derivative by definition, i.e.

there is no need to assume it is constant at this point.

The heat flux can be characterized by the Nusselt number, a non-dimensional

parameter defined as

Nu =
qwdp

kc(Tp − Tc)
(2.92)

where Tp is the temperature of the discrete particle, Tc is the temperature of the

continuum fluid, kc is the thermal conductivity of the gas, and dp is the particle

diameter. Combining the definition of the Nusselt number with the conservation

of energy (see Crowe et al. [4]) results in an evolution equation for the temperature

of an isolated particle

dTp

dt
=

Nu

2

12kc

ρpCvpd2
p

(Tc − Tp)

=
1

τT

(Tc − Tp) (2.93)

where the density of the particle, ρp, has been combined with its volume to simplify

the equation and the thermal response time is given by

τT =
ρpCvpd

2
p

12kc

2

Nu
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The above equations neglect radiative heat transfer. They also assume that the

temperature is uniform throughout the interior of the particle, which is a valid

assumption as long as the Biot number for the flow is less than 0.1.

Continuum based multiphase models, which utilize a continuum representation

of both the continuous and discrete phases, are not interested in the behavior of

a single isolated particle. Rather, within a single computational cell, each discrete

phase is assumed to be a cloud of particles. Fortunately, even though (2.93) has

been derived for an isolated particle, it is easily seen that the equation is also valid

for a particle cloud where each particle shares the same properties and temperature.

This assumes that each particle is thermally isolated from other particles and

thus all heat transfer occurs between isolated particles and the surrounding gas.

Therefore, (2.93) can be applied to each particle phase, such that

dTπ

dt
=

1

τπ

(T0 − Tπ) (2.94)

where the subscript π = 1, N designates one of the N particle phases. Although

the multiphase model allows for multiple gas phases, the thermal-relaxation model

treats them all as a combined bulk-gas phase, denoted with the subscript 0. The

determination of the bulk-gas properties is discussed in §D.2. Note that there is

a thermal response time associated with each particle phase and the subscript T

has been dropped from τ for simplicity.

Closure of the above system of equations, (2.94), is obtained by using

conservation of energy over all particle and gas phases. Combining (2.94) with

the definition of the extensive thermal energy given above results in expressions

for the change in total energy of each particle phase

dEπ

dt
=

mπCvπ

τπ

(T0 − Tπ)

Assuming that there is no heat transfer or work being done across the boundary

of the computational cell, conservation of energy yields

dE0

dt
+

N
∑

π=1

[

dEπ

dt

]

= 0
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resulting in

m0Cv0
dT0

dt
+

N
∑

π=1

[

mπCvπ

τπ

(T0 − Tπ)

]

= 0

dT0

dt
= −

N
∑

π=1

[

cπ

τπ

(T0 − Tπ)

]

(2.95)

where

cπ =
mπCvπ

m0Cv0

=
απρπCvπ

α0ρ0Cv0

Thus, the system is closed and the final set of equations is

dT0

dt
= −

(

N
∑

π=1

cπ

τπ

)

T0 +
N
∑

π=1

[

cπ

τπ

Tπ

]

(2.96)

dTπ

dt
=

1

τπ

T0 −
1

τπ

Tπ : π = 1, N

The initial conditions for the above system are given by the phase temperatures

at the beginning of the thermal-relaxation stage, T old
π . The system is solved to

get the updated temperature, T new
π , using the methods discussed in §D. The

time between the initial and updated state is the time-step ∆t. After the new

temperatures have been computed, the phase internal energy is updated

∆επ = Cvπ

(

T new
π − T old

π

)

(2.97)

to account for the temperature change.

2.1.14.3 Velocity Relaxation

The velocity-relaxation module accounts for momentum transfer between phases,

primarily drag. Consider an isolated particle embedded within a continuum fluid.

Due to force interactions between the particle and the fluid, momentum transfer

will occur. Momentum conservation is governed by Newton’s second law

mp
d~up

dt
= ~F = ~FD + ~FP + · · · (2.98)
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where the total force, ~F , is the result of aerodynamic drag and the pressure

variations within the fluid. Additional forces, such as the virtual mass or Basset

force, could be included. Assuming they are constant over a single time-step would

allow them to be included in the source term associated with the pressure gradient.

However, at this time, the additional terms have not been investigated. Gravity

and other body-force contributions to the force are not included here as they are

more appropriately accounted for within the hydrodynamic phase. Crowe et al. [4]

discusses the terms contributing to particle force in detail.

The drag force is assumed to obey the relation

~FD =
1

2
ρcV

2
R

(~uc − ~up)

VR

CD

πd2
p

4
(2.99)

where ~up and ~uc are the particle and continuum fluid velocity respectively, ρc is the

fluid density, dp is the particle diameter, VR = |~uc − ~up| is the relative velocity of the

particle, and CD is the drag coefficient. The above expression for the aerodynamic

drag results directly from the definition of the drag coefficient.

Pressure gradients within the continuum fluid give rise to a force in the direction

of the gradient. Assuming the pressure gradient is constant in the region around

the particle surface, the net force acting on the particle is given by

~FP = −mp

ρp

∇pc

where ρp is the particle density and pc is the fluid pressure.

Plugging the above force definitions into (2.98) yields the governing equation

for particle motion

d~up

dt
=

3

4

ρc

ρp

CD

dp

VR (~uc − ~up) −
∇pc

ρp

=
1

τV

(~uc − ~up) − ~qp (2.100)

where the velocity response time is given by

τV =
4

3

ρp

ρc

dp

CDVR
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and the non-homogeneous source term is

~qp = −∇pc

ρp

Continuum based multiphase models, which utilize a continuum representation

of both the continuous and discrete phases, are not interested in the behavior of

a single isolated particle. Rather, within a single computational cell, each discrete

phase is assumed to be a cloud of particles. Fortunately, even though (2.100)

has been derived for an isolated particle, it is easily seen that the equation is

also valid for a particle cloud where each particle shares the same properties and

velocity. This assumes that each particle is isolated from other particles and thus

all force interactions occur between isolated particles and the surrounding gas.

Therefore, (2.100) can be applied to each particle phase, such that

d~uπ

dt
=

1

τπ

(~u0 − ~uπ) − ~qπ (2.101)

where the subscript π = 1, N designates one of the N particle phases. Although

the multiphase model allows for multiple gas phases, the velocity-relaxation model

treats them all as a combined bulk-gas phase, denoted with the subscript 0. The

determination of the bulk-gas properties is discussed in §D.2. Note that there is

a velocity response time associated with each particle phase and the subscript V

has been dropped from τ for simplicity.

Closure of the above system of equations, (2.101), is obtained by using

conservation of momentum over all particle and gas phases. Combining (2.101)

with the definition of momentum results in expressions for the change in total

momentum of each particle phase

d(mπ~uπ)

dt
=

mπ

τπ

(~u0 − ~uπ) − mπ~qπ

Assuming that there is no force across the boundary of the computational cell,

conservation of momentum yields

d(m0~u0)

dt
+

N
∑

π=1

[

d(mπ~uπ)

dt

]

= 0 (2.102)
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resulting in

m0
d~u0

dt
+

N
∑

π=1

[

mπ

τπ

(~u0 − ~uπ)

]

+
N
∑

π=1

[mπ~qπ] = 0

d~u0

dt
= −

N
∑

π=1

[

cπ

τπ

(~u0 − ~uπ)

]

−
N
∑

π=1

[cπ~qπ] (2.103)

where

cπ =
mπ

m0

=
απρπ

α0ρ0

Thus, the system is closed and the final set of equations is

d~u0

dt
= −

(

N
∑

π=1

cπ

τπ

)

~u0 +
N
∑

π=1

[

cπ

τπ

~uπ

]

−
N
∑

π=1

[cπ~qπ] (2.104)

d~uπ

dt
=

1

τπ

~u0 −
1

τπ

~uπ + ~qπ

The initial conditions for the above system are given by the phase velocities

at the beginning of the velocity-relaxation stage, ~uold
π . The system is solved to get

the updated velocity, ~unew
π , using the methods discussed in §D. The time between

the initial and updated state is the time-step ∆t.

Finally, after the new velocities have been computed, the phase internal energy

is updated. This comes from conservation of total energy. Since the kinetic energy

of the phases has changed, the internal energy must be adjusted appropriately to

conserve total energy. Therefore, the internal energy is updated such that

dε0

dt
=

d

dt

(

~u0 · ~u0

2

)

+
N
∑

π=1

[

cπ
d

dt

(

~uπ · ~uπ

2

)]

(2.105)

dεπ

dt
= 0 (2.106)

where the choice was made to dump all the excess energy into the gas phase.

Therefore, viscous heating will tend to heat the gas. Dividing up the energy to all

phases using a mass weighting has been tried, but it is believed that heating the

gas is more realistic for the majority of applications.
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2.1.14.4 Summary of Relaxation Solution

The previous sections (§2.1.14.2 and §2.1.14.3) derived models for energy and

momentum transfer between phases. Both relaxation models result in similar

systems of ODE’s which govern the interactions. Therefore, the governing

equations for both models can be solved using the same numerical techniques. Two

distinct solution strategies have been developed to solve these equations for use in

the current method. The first is an analytic solution method where a closed-form

solution is generated using an eigenvalue decomposition. The analytic method

is exact for the case of constant coefficients. For non-constant coefficients the

method drops to first order. The second method solves the equations numerically

using the backward-Euler time-stepping scheme. This method is also first-order

accurate. These solution algorithms are discussed in detail in §D.

As discussed in §2.1.9, the relaxation processes are handled using an operator-

split approach. Therefore, within a time-step, the hydrodynamic conservation

laws are solved first. The relaxation terms are solved afterwards. Each relaxation

process is solved separately in a serial sequence: first velocity relaxation, followed

by temperature relaxation, and then pressure relaxation. Details of the steps are

discussed in the following table.

Velocity Relaxation

The velocity relaxation operator is the first to be evaluated. It is applied by

looping over every cell in the multiphase fluid and performing the following

calculations:

• Evaluate the equation of state and material properties of the discrete

phases as well as the bulk gas (see §D.2) within the cell.

• The local Reynolds number of the particles is determined using the

relative motion between the particle and gas phases. This is used to

compute a drag coefficient for each discrete phase. A number of drag

coefficient formulations are available, which are outlined in §B. The
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drag coefficient is used to evaluate the velocity response time, τV .

• All of the coefficients in (2.104) have now been calculated, so these

equations are solved using either the analytic or backward-Euler

integration method. This is done for each coordinate direction. This

provides updated velocity vectors for each phase.

• The internal energy is updated to account for the change in kinetic

energy by integrating (2.105).

Temperature Relaxation

The temperature relaxation operator is evaluated next. It is applied by

looping over every cell in the multiphase fluid and performing the following

calculations:

• Evaluate the equation of state and material properties of the discrete

phases as well as the bulk gas (see §D.2) within the cell.

• A Nusselt number is computed for each discrete phase. A variety of

Nusselt number formulations are available, which are outlined in §C.

The Nusselt number is used to evaluate the thermal response time, τT .

• All of the coefficients in (2.96) have now been calculated, so these

equations are solved using either the analytic or backward-Euler

integration method. This provides updated temperature values for each

phase.

• The internal energy is updated to account for the change in thermal

energy using (2.97).

Pressure Relaxation

The pressure relaxation operator is the last to be evaluated. Pressure

relaxation is fundamentally different than temperature and velocity

relaxation. An iterative scheme is applied to each computational cell until

pressure equilibrium is achieved:
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• Apply a change to the volume fraction.

• Update the density and internal energy due to the volume change.

• Evaluate the pressure of each phase using its equation of state.

• If pressure equilibrium has been reached, quit. If not, do another

iteration.

It is important to note that the initial conditions for each step are a result of the

previous stage. Therefore, the initial conditions for the drag model come from the

hydrodynamic solve. Initial conditions for the temperature relaxation come from

the velocity relaxation. The pressure equilibrium starts out with the results of

the temperature relaxation. Also note that it is possible for subsequent operations

to undo previous results. For example, for very small thermal response times the

temperature relaxation model will predict thermal equilibrium between the phases.

However, the pressure-relaxation module subsequently updates the temperature

and the phases will not be in temperature equilibrium anymore. Thus, the model

is not equivalent to a temperature-pressure equilibrium model.

2.2 The Structural Model

This section discusses the structural mechanics model. It begins with a

presentation of the governing equations. This is followed by an outline of the

algorithm used to solve them.

The current research has focused primarily on the development of the

multiphase capability. The structural model was taken from an existing hydrocode

and required very little modification. Therefore, the documentation of the

structural model is much less detailed than the previous description of the

multiphase model. The reader is referred to [40] for additional theoretical

documentation of the structural model.
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2.2.1 Lagrangian Equations

The governing equations for the structural material are given by the Euler

equations (2.1–2.3). However, unlike the earlier discussion which presented the

conservation laws in an Eulerian frame, the structural model uses a Lagrangian

representation. These equations can be found in numerous mechanics texts

(e.g. [72]). Defining ρ0 as the initial material density and J as the determinant of

the deformation gradient, the Lagrangian equations are given by

Mass Balance

ρJ = ρ0 (2.107)

Momentum Balance

ρ
D (ui)

Dt
=

∂ (σij)

∂xj

(2.108)

Energy Balance

ρ
D (ε)

Dt
= σijDij (2.109)

The rate of deformation is given by

Dij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

and the Cauchy stress tensor, σij, includes the deviatoric component representing

material strength. The material derivatives, D
Dt

, move with the material.

2.2.2 Lagrangian Algorithm

The governing equations (2.107–2.109) are solved using an explicit Lagrangian

methodology. The scheme is second-order in both space and time. The method

is staggered in space. This means that the velocity field is centered at the nodes

and uses tri-linear basis functions, while the thermodynamic state (i.e. density,

energy, pressure, etc.) is cell-centered and uses piecewise-constant basis functions.

It is also staggered in time, where the velocity is evaluated at the mid-level of the
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time-step. It is similar to the staggered-grid hydro scheme outlined in Benson [23].

The stress gradients and strain rates for the Lagrangian step are evaluated by a

low-order finite-element method (FEM), as in Goudreau and Hallquist [73]. A

lumped (diagonal) mass matrix is used. The energy is handled similar to the

method of Wilkins [74], where total-energy conservation is not explicitly enforced.

This averts the problem of converting lost kinetic energy into internal energy and

overheating materials. The pressure work is integrated using a third-order Runge-

Kutta method. Shocks are treated with a scalar artificial viscosity and hour-glass

modes are damped using an hour-glass correction.

The following procedure is used to update the structural state from time tn to

time tn+1:

• Construct the force at each node at tn. This involves integrating the surface

forces over a control volume at each mesh node. The surface forces have

contributions from the material stress, pressure, artificial viscosity, and hour-

glass forces.

• Compute the nodal acceleration by dividing the nodal force by the mass of

the control volume around the node.

• Integrate the acceleration to get the nodal velocity at tn+ 1

2 .

• Integrate the velocity to determine the nodal displacement. This is then used

to update the nodal positions at tn+1.

• Evaluate the material state:

– Evaluate the constitutive model for the strength of the material.

– Update the artificial viscosity and hour-glass forces.

– Advance the internal energy based on the work done during the time-

step.

– Evaluate the pressure from the equation of state.
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• Advance the time and return to the beginning of the step.

2.3 The Fluid-Structure Interaction Model

The interaction between the multiphase material and the structure is handled

at the material interface. A diagram of the computational cells near a material

interface is seen in Figure 2.6. As seen in the figure, the structural and multiphase

zones share nodes and faces along the interface. This is required for the current

method as the interface is required to coincide with the cell boundaries. Thus, the

interface must remain Lagrangian.

The overall time-stepping scheme uses an operator-split methodology. The

time-step begins by solving the Lagrangian motion of the structure. This moves

the structural nodes as well as the nodes on the interface. This is followed by

a mesh-relaxation step which moves the multiphase nodes, allowing for a quality

mesh for the fluid solution while continuing to conform to the moving structure.

The multiphase hydrodynamics is then computed on the moving mesh. Multiphase

relaxation and source terms are added at the end. The following sections discuss

each of these algorithmic steps individually.

2.3.1 Stage 1: Fluid to Structure Coupling

The first stage in the time-step algorithm is to update the position of the structural

nodes using the FEM staggered-grid hydro algorithm discussed in §2.2. During

the Lagrangian structural calculation, the multiphase interface is treated as a

Neumann (natural) boundary condition. Thus, the fluid imparts force on the

structure via surface tractions, but the nodal motion of the interface is determined

by the structural FEM method.

Figure 2.6 designates the multiphase zones adjacent to the material interface as

ghost zones. The ghost zones contribute to the force on the structure. Although the

ghost zones are not physically part of the structure, they are treated as structural

zones during the FEM calculation and contribute pressure force as well as mass to

the structural nodes. The properties in the ghost zones are determined using the
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mixture properties of the multiphase material, given by

pmix =
∑

π

απpπ (2.110)

ρmix =
∑

π

απρπ (2.111)

where the volume-fraction weighted sum is taken over each phase (π) and pmix and

ρmix are the mixture pressure and density, respectively.

A couple of points about the above model should be highlighted. First, the

force acting on the structure is determined entirely by the pressures in the gas and

particle phases. Thus the particle phase behaves like a fluid and any momentum

transferred from the particles to the structure is due to an increase in pressure due

to the stagnation of the particle field. This is a fundamentally different process

from the manner in which a discrete phase would actually interact with a structure.

Discrete particles rely on particle-wall collisions to transmit momentum. This

happens through a series of small impulses acting on the structure due to the

particles impacting and bouncing off the wall. Despite this disparity, it is noted

that the interaction conserves momentum for the system and any deficiencies are

expected to be limited to higher-order effects. The second point is that the mass of

the gas and particle phases in the ghost cells is included in the structural response.

Therefore, the inertia of the multiphase mixture is included in the structural

response. Therefore, this is slightly different from applying a pressure boundary

condition on the surface of the structure.

2.3.2 Stage 2: Fluid Mesh Relaxation

After the structural finite-element calculation, the next stage is to rezone the

multiphase fluid mesh. This stage repositions the internal multiphase nodes which

are not on the fluid-structure interface. These nodes are identified by the yellow

circles in Figure 2.6. The purpose of this step is to allow the fluid mesh to

conform to the moving structural boundary while preserving a smooth mesh for

the multiphase calculation and avoiding mesh tangling.
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This stage is further separated into two steps. The first step (step 1) moves

the nodes in the direction of the material motion. This is used to determine the

initial conditions for the second part, which is a mesh smoothing step (step 2).

In step 1, the nodal positions are moved in the direction of the flow. The flow

direction is determined from the velocity of the bulk multiphase mixture, given

by (D.9). Since the flow velocities are cell-centered, they must be relocated to

the nodes. This is done using a modified version of the cell-centered Lagrangian

approach of Maire [75]. The implementation of this scheme in the current

method only updates the nodal positions and does not modify the material state.

Therefore, the method is not consistent with the actual Lagrangian motion of the

material. However, since this is just a preprocessing step used to obtain the initial

nodal positions for the mesh relaxer, the accuracy of the step is inconsequential.

Step 2 smooths out the mesh. Any mesh-smoothing procedure that retains the

original mesh structure and prevents the mesh from tangling could be used with

the current ALE scheme. An equipotential relaxation method [76, 77] is generally

used. This is an iterative method based on elliptic grid-generation techniques. A

mesh generator would typically use hundreds of iterations to converge to a smooth

mesh. In the current code, each time-step typically performs a single iteration,

although additional iterations can also be specified.

The iterative technique uses the nodal positions computed in step 1 as initial

conditions. This is very effective for many applications. For example, forcing the

mesh to track the material allows for better resolution of flow features, such as

shocks. It has also proved useful for preventing tangling near structural interfaces.

However, in some cases the mesh behaves better using the original position.

Therefore, there is an option to undo step 1, and revert back to the original position

to initialize the mesh relaxer.

The above mesh-relaxation procedure is automated and useful for general

applications. However, in some cases it is desired to have a little more control

over the exact motion of the mesh. Therefore, the ability to prescribe the mesh
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motion has also been included. This option requires the user to specify the nodal

positions explicitly at the start of the calculation. This option has been used in

many of the test cases presented later in this document.

Once the new mesh locations are determined, the volume fluxes (Ωn+1
f ) of the

faces are computed. These are calculated geometrically by determining the volume

swept out by the face as it moves from its original position at the beginning of the

time-step (tn) to its final position at the end of the relaxation step (tn+1). This

volume is shown in Figure 2.2. The volume flux is then used to compute the mesh

velocity of the face using (2.69).

2.3.3 Stage 3: Structure to Fluid Coupling

In the final stage, the DEM method is used to compute the multiphase material

on the moving mesh using the methods of §2.1. The multiphase model sees the

material interface as a wall boundary condition, where no flux passes through the

wall. Since this is applied in the normal direction and there is no shear stress in the

fluid, this is equivalent to a slip boundary condition for the velocity (see §2.1.12.2).

A single-sided Riemann solve (2.81) is performed using the wall velocity and the

state in the zone on the multiphase side of the interface. The wall velocity is

computed using (2.69), in much the same way that the mesh velocity is computed

for all of the other fluid faces. As the mesh velocity is equal to the material

velocity, the resulting flux returned from the Riemann solver is the Lagrangian

flux. This flux is then used to evaluate the convective flux associated with the

DEM method (2.37).
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Figure 2.1: Diagram of computational cells. Zones are notated by capital letters,
nodes with numbers, faces by lower case letters.
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Figure 2.2: Diagram of the volume flux through a moving face. The shaded area
represents the volume which is swept out as the face moves. This volume is used
to satisfy the geometric conservation laws.
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(a) Initial Geometry (b) Flux computed from
time level n

(c) Flux computed from
GCL consistent level

Figure 2.3: An example problem revealing the importance of satisfying the GCL.
The colors represent density magnitude.
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Figure 2.4: Characteristic fan for the Riemann problem
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Figure 2.5: Grid stencil used for second-order predictor.
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Figure 2.6: Mesh diagram of the multiphase/Lagrangian-structure interface. The
green zones are controlled by the multiphase algorithm; the blue zones are
controlled by the staggered-grid FEM.
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Contact Surface
1–1 S11 = Sf min(α1,in, α1,out)
1–2 S12 = Sf max(0, α1,in − α1,out)
2–1 S21 = Sf max(0, α2,in − α2,out)
2–2 S22 = Sf min(α2,in, α2,out)

Table 2.1: Definitions of surface contacts used for computing the convective and
Lagrangian fluxes.
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Contact Phase
1–1 Ψ∗

1,11 = 1

1–2 Ψ∗
1,12 =

{

1 if û∗
12 > 0

0 otherwise

2–1 Ψ∗
1,21 =

{

1 if û∗
21 < 0

0 otherwise

2–2 Ψ∗
1,22 = 0

Table 2.2: Definitions of inter-cell phase function used for computing the convective
fluxes.
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Contact Jump
1–1 [[Ψ1]]

∗
11 = 0

1–2 [[Ψ1]]
∗
12 =

{

−1 if û∗
12 < 0

0 otherwise

2–1 [[Ψ1]]
∗
21 =

{

+1 if û∗
21 < 0

0 otherwise

2–2 [[Ψ1]]
∗
22 = 0

Table 2.3: Definitions of inter-cell jump functions used for computing the
Lagrangian fluxes.
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Chapter 3

Results

The multiphase model discussed in this document has been exercised on a number

of test problems. First and foremost, the test problems are designed to verifying

that the model has been implemented correctly. This is done primarily by running

tests with known analytic solutions. Some of the tests have been developed to

show that the model is applicable to multiphase applications of interest. These are

generally compared to experimental test data.

The numerical results have been divided into three sections. The first section

tests fundamentals of the numerical implementation on canonical single-phase test

problems. The next section looks at simulations involving multiple phases. Finally,

the last section exercises the fluid-structure interaction model by simulating

multiphase fluids interacting with solid structures.
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3.1 Single Phase

The first set of tests will investigate the behavior of the multiphase methodology

when it is applied to a single-phase material. In the limit of a single-phase, the

current multiphase algorithm reduces down to a system of conservation laws which

are equivalent to the Euler equations. The CFD community has developed a

large number of canonical test problems for the Euler equations. These tests are

commonly used to evaluate the numerical properties of computational models.

The tests incorporate flow features which are relevant to both single-phase and

multiphase flows, such as shock and rarefaction waves. Therefore, a lot can be

learned by comparing single-phase simulations to benchmark solutions of the Euler

equations.

The tests begin with a convergence study on the numerical method. This is

followed by simulations of the Riemann problem in the Toro and Sod shock-tube

problems. Next, an explosive blast is modeled in the Sedov test and an implosion

is modeled in the Noh test.

These tests are used to assess the order of accuracy of the model and its stability

properties. The behavior of the model near discontinuities is also observed. The

application of boundary conditions can also be observed using the single-phase

tests. Since the tests were restricted to those which have analytical solutions,

the problems are all one-dimensional. However, the Sedov and Noh problems are

computed using two-dimensional and three-dimensional meshes, thus utilizing the

multi-dimensional capabilities of the model.



77

3.1.1 Single-Phase Smooth Test Problem

Test Description

The following test is used to verify the order of accuracy of the method for a

single-phase material. It is a numerical exercise and not designed to model any

physical reality. One of the implicit assumptions when discussing the order of a

numerical method is that the solution is smooth. Therefore, this test uses smooth

initial conditions. Chosen appropriately, smooth spatial variations at the beginning

of the run will result in transient behavior that remains smooth throughout the

simulation. Simulations are performed on a series of grids in order to compute the

convergence rate of the method. An example of a similar test in the literature is

found in Schwendeman et al. [48].

Test Setup

This test is designed to exercise the single-phase Euler equations. The phase

material uses an ideal-gas equation of state with γ = 1.4. The material state is

initialized using the functions

ε = 2.5

p = 5.0 + 0.5 tanh(10x − 4)

u = 0.2 + 0.3 tanh(20x − 10)

which are smooth on the domain of interest. The functional form of the initial

conditions is somewhat arbitrary, but they were chosen in order to obtain smoothly

varying transient behavior.

The problem is designed to be one dimensional. It is modeled using a three-

dimensional mesh with a single zone in the y and z directions and symmetry

boundary conditions on the sides, resulting in a pseudo-1D flow in the x direction,

with x ∈ [0, 1]. The number of zones in the x direction are varied to look at mesh

convergence. Outflow boundary conditions are given at the boundaries x = 0 and

x = 1. An Eulerian mesh, with no mesh motion, is used for the simulations.

The solutions are compared at the simulation end time t = 0.05. A constant
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time-step was used for these tests. The size of the time-step was chosen to be

∆t = 0.05
N

, where N is the number of grid cells. This was found to satisfy the

stability conditions at all times.

Test Theory

No analytic solution is available for this test. Smooth analytic solutions are

difficult to obtain in general. However, the exact solution can be approximated

with sufficient accuracy using the current numerical method with a very large

number of grid cells. For the current study 12, 800 grid cells were used to obtain

the baseline solution. Baseline solutions were obtained using both the first-order

and the second-order algorithms. The first-order solution is used as the baseline

for the first-order results on the coarser meshes, and the second-order solution is

used as the baseline for the second-order results.

Test Results

Solutions were obtained using both the first-order and second-order schemes.

The first-order (predictor off) results are plotted in Figure 3.1, and the second-

order (predictor on) results are plotted in Figure 3.2. Calculations using four

mesh-refinement levels were performed using 100, 200, 400, and 800 grid cells. The

numerical results for the various grid resolutions are given by the colored symbols,

while the high-resolution solution is designated as Theory and represented by the

solid black line.

All of the calculations resulted in a smooth final flow-field with no shocks or

contact discontinuities developing. The results also reveal spatial variation in all

of the plotted variables. It appears that the calculations are converging towards

an answer as the mesh is refined. The first-order solutions exhibit more variation

between the finest and coarsest grids than the second-order method.

Test Error Quantification and Convergence

The discretization error for the solution can be quantified using the fine-grid

solution as a baseline. The error (EN) is determined for a mesh-refinement level N

using the methods of §E. The calculated error for the current solutions has been
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computed for the variables density, velocity, pressure, and internal energy.

The errors are tabulated along with the associated convergence rates (rN)

in Table 3.1 for the first-order method. The results indicate that the first-order

scheme is indeed first-order since the convergence rates are very close to one.

The errors for the second-order method are shown in Table 3.2. The

convergence rate for a second-order scheme should have a value of two. However,

the current results point toward a convergence rate closer to one, thus indicating

first-order convergence rather than second-order. It is noted that the magnitude

of the error is lower for the second-order method than for the first-order.

Two possible explanations for not attaining second-order have been identified.

First, it is noted that the error reported in this test is a combination of both

spatial and temporal discretization error. Therefore, it is possible that the current

algorithm is second-order in space, but only first-order in time. Second, despite

the smooth flow profile, it is possible that the slope limiters used in the predictor

step are influencing the convergence behavior of the second-order scheme.

In order to investigate this further, an additional series of tests have been run

with a couple changes. In the previous test the time-step was reduced as the mesh

refinement was increased. In the new tests, the time-step was given a constant

value of ∆t = 0.05
12800

for all grid levels. Therefore, the time-discretization error

should be nearly constant throughout all grid levels. Also, the new tests were run

with the predictor on, but the slope limiters were disabled. The observed error

and convergence rates for these new tests are tabulated in Table 3.3. As seen,

second-order behavior has been restored.

It should be noted that just disabling the slope limiters, while keeping the time-

steps the same as in the earlier tests does not exhibit second-order convergence

rates. Therefore, the dropping in order is probably due to errors in the time

discretization. This indicates that the observed order of accuracy for the method

is second order in space, but only first order in time.

It is not currently understood why the time-stepping scheme fails to
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demonstrate second-order convergence. A possibility is that the use of the

simplified predictor (2.86) is causing the rate of convergence to drop. Perhaps using

the full predictor (2.85) would regain the desired order of accuracy. Resolving this

issue will be an important component of future research.

Test Conclusions

A test problem utilizing smooth initial conditions has been used to assess the

order of accuracy of the current method for a single-phase flow. The following

conclusions can be drawn from this calculation:

• The current first-order scheme demonstrates an observed convergence rate of

first-order.

• The default second-order scheme does not demonstrate second-order

convergence, but rather exhibits convergence rates closer to first-order.

Disabling the slope limiters in the scheme appear to regain second-order

convergence in space. However, the time-stepping scheme still appears to be

only first order in time.

• The current test relies on one-dimensional geometries. It would be strait-

forward, although more computationally expensive, to extend the current

test to three dimensions.

• A more rigorous (and more complicated) technique for order-of-accuracy

verification is the method of manufactured solutions as discussed by

Roache [78] and Salari et al. [79]. The idea here is to manufacture an exact

solution and then modify the original governing equations by adding source

terms in such a way that the manufactured function becomes the exact

solution. This could be a more systematic way to quantify the scheme’s

accuracy.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.1: Numerical results for the single-phase smooth test. The tests used an
Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.2: Numerical results for the single-phase smooth test. The tests used an
Eulerian grid with the predictor on.
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N EN rN

Density
100 1.95e-02
200 1.01e-02 0.94
400 5.13e-03 0.98
800 2.52e-03 1

Velocity
100 3.74e-03
200 1.99e-03 0.91
400 1.02e-03 0.97
800 5.01e-04 1

Pressure
100 2.76e-02
200 1.44e-02 0.94
400 7.26e-03 0.98
800 3.56e-03 1

Energy
100 4.99e-03
200 2.59e-03 0.94
400 1.31e-03 0.98
800 6.43e-04 1

Table 3.1: Numerical error and convergence rates for the single-phase smooth test.
The tests used an Eulerian grid with the predictor off.



84

N EN rN

Density
100 1.39e-03
200 6.26e-04 1.1
400 3.08e-04 1
800 1.53e-04 1

Velocity
100 3.91e-04
200 1.42e-04 1.5
400 6.39e-05 1.2
800 3.10e-05 1

Pressure
100 1.89e-03
200 8.75e-04 1.1
400 4.35e-04 1
800 2.16e-04 1

Energy
100 2.94e-04
200 1.49e-04 0.99
400 7.71e-05 0.95
800 3.94e-05 0.97

Table 3.2: Numerical error and convergence rates for the single-phase smooth test.
The tests used an Eulerian grid with the predictor on.
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N EN rN

Density
100 1.08e-03
200 2.55e-04 2.1
400 6.19e-05 2
800 1.54e-05 2

Velocity
100 2.53e-04
200 6.36e-05 2
400 1.61e-05 2
800 4.08e-06 2

Pressure
100 1.48e-03
200 3.48e-04 2.1
400 8.47e-05 2
800 2.11e-05 2

Energy
100 2.22e-04
200 5.27e-05 2.1
400 1.32e-05 2
800 4.16e-06 1.7

Table 3.3: Numerical error and convergence rates for the single-phase smooth test.
The tests used an Eulerian grid with the predictor on/no limiter.
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3.1.2 Toro Test Problems

Test Description

The Riemann problem is an initial-value problem for hyperbolic conservation

laws where the initial conditions consist of piecewise constant data having a single

discontinuity. The Riemann problem is very useful for understanding the Euler

equations because all properties, such as shocks, rarefaction waves, and contact

discontinuities, appear as characteristics in the solution. Thus, exact solutions can

be obtained for comparison to numerical calculations.

The text by Toro [53] specifies a number of numerical tests given by the

Riemann problem with various initial conditions. The tests were selected to test

the performance of numerical methods for wave patterns likely to be encountered

in typical hydrodynamic problems.

Test Setup

Seven test problems were investigated as defined by [53, p 329]. These problems

look at the single phase Euler equations for an ideal gas with γ = 1.4. The tests

consist of two constant states, {ρL, uL, pL} on the left and {ρR, uR, pR} on the right.

The spatial domain of the problem is x ∈ [0, 1] where the left and right states are

separated by a discontinuity at position x = x0. The solutions are compared at the

simulation end time t = t0. The initial conditions for the seven tests are tabulated

in Tables 3.4–3.5.

The problem is one dimensional by definition. It is modeled using a three-

dimensional mesh with a single zone in the y and z directions and symmetry

boundary conditions on the sides, resulting in a pseudo-1D flow in the x direction.

The number of zones in the x direction are varied to look at mesh convergence.

Outflow boundary conditions are given at the boundaries x = 0 and x = 1. An

Eulerian mesh, with no mesh motion, is used for the simulations.

Test Theory

There is no closed-form solution for the Riemann problem of the Euler equations.

However, exact solutions can be obtained using iterative procedures. The exact
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solution of the Riemann problem is computed using the methods discussed in

Toro [53].

Test Results

The numerical results of the seven tests are plotted in Figures 3.3–3.16.

The numerical results for the various grid resolutions are given by the colored

symbols, while the exact solution is represented by the solid black line. The

computations were performed on a fixed Eulerian mesh using both the first-order

method (predictor off) and the second-order scheme (predictor on). The current

simulations using the AUFS Riemann solver, exhibit similar behavior as the results

for the first-order HLLC approximate Riemann solver as presented in [53].

Test 1 (Figure 3.3) is a modified version of the Sod problem [80] (see §3.1.3).

It consists of a rightward traveling shock, a rarefaction wave on the left, and in the

middle there is a contact discontinuity traveling to the right following the shock.

The first-order numerical approximation exhibits some numerical diffusion, as the

shock has been smeared over 7 or 8 grid cells. As expected, the contact is even

more diffusive. The rarefaction seems to be reasonably resolved with only minor

diffusion occurring at the head and tail of the wave. The calculation appears to

be monotonic in the vicinity of the shock and contact as there are no spurious

oscillations for this test case. It appears that the average position of the waves is

correct, indicating that speed of propagation of the waves is accurately captured

in the calculations. Turning the predictor on (Figure 3.10) reduces the diffusion in

the shock and contact. Small oscillations can be seen at the location of the contact

in the velocity and pressure curves.

Test 2 (Figure 3.4) is referred to as the 123 problem and consists of two

symmetric rarefaction waves and a stationary contact. The region between the

rarefaction waves is close to vacuum, which leads to difficulties in numerical

schemes. That can be seen in the calculation of the internal energy. The density

and pressure are computed reasonably. However, due to their small magnitude,

small errors in the density manifest as much larger errors in the energy.
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Test 3 (Figure 3.5) is the left half of the blast problem of Woodward and

Colella [81]. It is a very strong (Mach 198) shock on the right, a contact and a

rarefaction on the left. The calculations show diffusion in the contact, resulting

in low values of density after the shock. The first-order solution does appear

monotone and it seems to be converging to the exact solution as the grid is refined.

The results with the predictor on (Figure 3.12) show improved resolution of the

discontinuities. However, non-monotonic oscillations can be seen at the shock and

the rarefaction.

Test 4 (Figure 3.6) represents the collision of two shocks. It consists of a right

traveling shock, a right traveling contact, and another shock on the left which

is also traveling slowly to the right. The contact is very diffusive in this case,

although both the left and right shocks are very sharply resolved. The results with

the predictor (Figure 3.13) are generally well-behaved, but show small wiggles in

the region between the shocks.

Test 5 (Figure 3.7) tests the ability of the method to capture very slowly-

moving contact discontinuities. It involves a right shock, a left rarefaction, and a

stationary contact. It is similar to test 3, but the contact is stationary. The contact

is very sharply resolved in the calculations resulting in very good representation

of the post-shock state. However, there are some non-monotonic overshoots at

the shock, and even more-pronounced overshoots at the contact. The overshoots

increase when the predictor is turned on (Figure 3.14) and also show up at the tail

of the rarefaction.

Tests 6 and 7 consist of an isolated contact discontinuity. In Test 6 (Figure 3.8)

the contact is stationary. In Test 7 (Figure 3.9) the contact is moving slowly to

the right. Notice that the current computations resolve the contact discontinuity

exactly for test 6, thus exhibiting similar behavior as the HLLC solver. The

resolution of the shock is improved when the predictor is turned on (Figure 3.16),

with no overshoots seen in this case.



89

Test Conclusions

The Toro test problems provide an excellent framework for analyzing the

accuracy of a numerical method and the performance of the Riemann solver for

common wave structures encountered in typical hydrodynamic problems. The

following conclusions can be drawn from these calculations:

• The calculations show that the current code using the AUSF Riemann solver

can be used to accurately represent hydrodynamic phenomena.

• The first-order scheme is fairly diffusive near shocks and contact surfaces, as

would be expected for first-order methods.

• The second-order predictor scheme is less diffusive near shocks and contact

discontinuities. However, unphysical oscillations are present in some of the

tests. These oscillations are similar to the ones observed in Toro [53] for

MUSCL-Hancock schemes. There it is observed that modifying the slope

limiter could potentially reduce the oscillations at the expense of additional

diffusion. This should be investigated with the current scheme.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.3: Single-phase numerical results for Toro Test #1. The tests used an
Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.4: Single-phase numerical results for Toro Test #2. The tests used an
Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.5: Single-phase numerical results for Toro Test #3. The tests used an
Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.6: Single-phase numerical results for Toro Test #4. The tests used an
Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.7: Single-phase numerical results for Toro Test #5. The tests used an
Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.8: Single-phase numerical results for Toro Test #6. The tests used an
Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.9: Single-phase numerical results for Toro Test #7. The tests used an
Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.10: Single-phase numerical results for Toro Test #1. The tests used an
Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.11: Single-phase numerical results for Toro Test #2. The tests used an
Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.12: Single-phase numerical results for Toro Test #3. The tests used an
Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.13: Single-phase numerical results for Toro Test #4. The tests used an
Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.14: Single-phase numerical results for Toro Test #5. The tests used an
Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.15: Single-phase numerical results for Toro Test #6. The tests used an
Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.16: Single-phase numerical results for Toro Test #7. The tests used an
Eulerian grid with the predictor on.
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Test x0 t0

1 0.3 0.2
2 0.5 0.15
3 0.5 0.012
4 0.4 0.035
5 0.8 0.012
6 0.5 2.0
7 0.4 2.0

Table 3.4: Position of discontinuity and end time for the Toro test problems.
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Test ρL uL pL ρR uR pR

1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950
5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01
6 1.4 0.0 1.0 1.0 0.0 1.0
7 1.4 0.1 1.0 1.0 0.1 1.0

Table 3.5: Initial conditions for the Toro test problems.
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3.1.3 Sod Shock Tube

Test Description

The shock tube problem studied by Sod [80] has become a standard test for

one-dimensional unsteady hydrodynamics algorithms. It consists of an ideal gas

separated into two regions by a discontinuity in its state. Initially, the fluid is at rest

and the left region is at a high pressure and the right region is at a lower pressure.

The resulting flow-field consists of a rightward traveling shock, a rarefaction wave

on the left, and in the middle there is a contact discontinuity following the shock.

The Sod test is a special case of the Toro test problems discussed in §3.1.2.

Test Setup

The Sod problem is a simulation of the single-phase Euler equations for an ideal

gas with γ = 1.4. The tests consist of two constant states, {ρL, uL, pL} on the left

and {ρR, uR, pR} on the right. The spatial domain of the problem is x ∈ [0, 1] where

the left and right states are separated by a discontinuity at position x = 0.5. The

solutions are compared at the simulation end time t = 0.15. The initial conditions

are tabulated in Table 3.6.

The problem is one dimensional by definition. It is modeled using a three-

dimensional mesh with a single zone in the y and z directions and symmetry

boundary conditions on the sides, resulting in a pseudo-1D flow in the x direction.

The number of zones in the x direction are varied to look at mesh convergence.

Outflow boundary conditions are given at the boundaries x = 0 and x = 1.

This test problem is run on both a fixed and moving mesh in order to compare

the two methodologies. For the ALE Sod problem, the mesh motion is predefined

and is not dependent on the motion of the material. The motion is defined such

that the velocity of the center node (initially at x = 0.5) translates to the right

at a constant speed. The center node’s translation speed is specified such that it

will travel one-quarter of the distance to the end of the domain at the end of the

simulation.
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Test Theory

The shock tube is a standard problem in gas dynamics. The theoretical solution

to the flow in a shock tube is discussed in Anderson [82]. As the shock tube is a

subset of the more general Riemann problem, the solution may also be computed

using the Riemann solver of Toro [53].

Test Results

The numerical results of the Sod test are plotted in Figures 3.17–3.22. The

numerical results for the various grid resolutions are given by the colored symbols,

while the exact solution is represented by the solid black line. The computations

were performed using both the first-order method (predictor off) and the second-

order scheme (predictor on). Calculations were done using a fixed Eulerian mesh

and a moving ALE mesh.

The results for the first-order scheme on the Eulerian mesh are shown in

Figure 3.17. The numerical approximation exhibits some numerical diffusion. The

shock has been smeared over 7 or 8 grid cells, and the contact is even more diffusive.

The rarefaction seems to be reasonably resolved with only minor diffusion occurring

at the head and tail of the wave. The calculation appears to be monotonic in

the vicinity of the shock and contact as there are no spurious oscillations for

this test case. The average position of the waves looks correct, indicating that

speed of propagation of the waves is accurately captured in the calculations. The

simulations appear to be converging to the theoretical solution as the mesh is

refined.

The numerical results of the ALE Sod test are plotted in Figure 3.18. The

results and convergence are comparable to the fixed-grid simulations. The fixed-

and ALE-grid simulations are directly compared in Figure 3.19. Comparison of the

fixed-grid simulations to the cases with mesh motion reveal that the moving grids

better resolve the shock and contact surface. This is due to a number of factors.

The first is better grid resolution because the mesh motion is causing the mesh to

move into the shock region. Another reason is that since the mesh is moving in the
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same direction as the material, there is less up-winding of the solution, resulting

in less numerical diffusion.

A Lagrangian calculation, where the mesh moves with the material, is also

plotted for comparison. Note that the current algorithms will only allow for

Lagrangian mesh motion in one-dimensional problems. The Lagrangian solution

exhibits an overshoot in the energy at the contact surface. This is the classical

wall-heating problem typical to Lagrangian Godunov-type methods. Although this

is a well recognized phenomenon, it is not well understood.

The above simulations were also performed with the predictor on. These

results are given in Figures 3.20–3.22. As expected, the results show less diffusion

around discontinuities than the first-order simulations. The solution is generally

monotonic, or at least any oscillations are much smaller than the ones observed

in §3.1.2. This is because the discontinuities in the Sod test are much less extreme.

Test Conclusions

The Sod test problem provides a mild test for analyzing the accuracy

of a numerical method for common wave structures encountered in typical

hydrodynamic problems. The following conclusions can be drawn from these

calculations:

• The calculations show that the current code using the AUSF Riemann solver

can be used to accurately represent the hydrodynamic phenomena of shocks,

rarefactions, and contact surfaces.

• The first-order scheme is fairly diffusive near shocks and contact surfaces, as

would be expected for first-order methods.

• The second-order scheme is less diffusive near shocks and contact surfaces.

• The calculations of the Sod problem exhibit monotonic behavior around

shocks and contact surfaces.

• The calculations on moving meshes show similar behavior as those run on
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fixed meshes. Thus, it appears that the ALE techniques used here work

properly for this test.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.17: Single-phase numerical results for the Sod Test. The tests used an
Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.18: Single-phase numerical results for the Sod Test. The tests used an
ALE grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.19: Single-phase numerical results for the Sod Test. The tests used
Eulerian/Lagrangian/ALE grids with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.20: Single-phase numerical results for the Sod Test. The tests used an
Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.21: Single-phase numerical results for the Sod Test. The tests used an
ALE grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.22: Single-phase numerical results for the Sod Test. The tests used
Eulerian/Lagrangian/ALE grids with the predictor on.
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Variable Value

x0 0.5
t0 0.15
ρL 1.0
uL 0.0
pL 1.0
ρR 0.125
uR 0.0
pR 0.1

Table 3.6: Initial conditions for the Sod test problem.
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3.1.4 Sedov Test

Test Description

The Sedov test is a one-dimensional explosion resulting from a finite quantity

of energy placed within an otherwise homogeneous domain. The energy originates

at a non-dimensional singularity point located at the origin. The background

medium is an ideal gas at zero pressure. The energy release results in a strong

shock propagating through the gas. The problem is symmetric, with spatial

variation only in the radial dimension. The problem can be specified in Cartesian,

cylindrical, or spherical coordinates, resulting in a planer, circular, or spherical

shock respectively.

Test Setup

The background domain is filled with an ideal gas with γ = 1.4 and an initial

density of ρ∞ = 1.0. Rather than zero pressure as specified in the description, the

gas is initialized with a very small pressure, p∞ = 10−14.

The theoretical solution to this problem assumes a singular energy source at

the origin. However, in practice, the code is initialized with an extensive quantity

of energy, Eblast, deposited within a small volume, Vblast. This small volume is

taken as a single computational cell at the origin of the domain. Spreading the

energy out over this small volume should have minimal effect on the solution at

later times away from the origin. The intensive internal energy within this volume

is computed as

ε =
Eblast

ρ∞Vblast

where the blast energy depends on the geometry, such that

Cartesian: Eblast = 0.0673185

Cylindrical: Eblast = 0.311357

Spherical: Eblast = 0.851072

as given by [83] in order to obtain the desired profiles at the end time, t = 1.0.

The solution was computed on the seven different meshes shown in Figure 3.23.

These meshes were chosen in order to compute the solution for all the coordinate
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geometries (Cartesian, cylindrical, and spherical) as well as take advantage of

various levels of symmetry inherent in the problem.

Test 1, Figure 3.23(a), uses a three-dimensional mesh to compute the 1D

Cartesian Sedov test. It consists of a row of n elements in the x direction and

a single zone in the y and z directions. Symmetry boundaries are on the y and z

planes. A symmetry wall is located at x = 0 and an outflow boundary is on the

other outer x surface.

Test 2, Figure 3.23(b), uses a three-dimensional mesh to compute the 1D

cylindrical Sedov test. It consists of a row of n elements in the x direction and

a single zone in the y and z directions. The elements are arranged in a wedge

geometry with an angle of 4 degrees separating the y planes. Symmetry boundaries

are on the z planes and angle-wall boundaries are on the y planes. A symmetry wall

is located at x = 0 and an outflow boundary is on the other outer x surface. The

origin, x = 0, is actually displaced slightly in the x direction to avoid a degenerate

element.

Test 3, Figure 3.23(c), uses a three-dimensional mesh to compute the 1D

spherical Sedov test. It consists of a row of n elements in the x direction and

a single zone in the y and z directions. The elements are arranged in a pyramid

geometry with an angle of 4 degrees separating the y planes and z planes. Angle-

wall boundaries are on the y and z planes. A symmetry wall is located at x = 0

and an outflow boundary is on the other outer x surface. The origin, x = 0, is

actually displaced slightly in the x direction to avoid a degenerate element.

Test 4, Figure 3.23(d), uses a two-dimensional axisymmetric mesh to compute

the 1D cylindrical Sedov test. It consists of a column of n elements in the y

direction and a single zone in the x direction. The elements are arranged in a

Cartesian block. Symmetry boundaries are on the x planes. A symmetry wall is

located at y = 0 and an outflow boundary is on the other outer y surface.

Test 5, Figure 3.23(e), uses a two-dimensional mesh to compute the 1D

cylindrical Sedov test. It consists of a Cartesian block of elements, uniformly
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spaced with n elements in the x and y directions. Symmetry boundaries are on

the x = 0 and y = 0 planes and an outflow boundary is on the other outer surfaces.

Data for this test is taken along a diagonal line characterized by the vector {1, 1}.
Test 6, Figure 3.23(f), uses a two-dimensional axisymmetric mesh to compute

the 1D spherical Sedov test. It consists of a Cartesian block of elements, uniformly

spaced with n elements in the x and y directions. Symmetry boundaries are on the

x = 0 and y = 0 planes and an outflow boundary is on the other outer surfaces.

Data for this test is taken along a diagonal line characterized by the vector {1, 1}.
Test 7, Figure 3.23(g), uses a three-dimensional mesh to compute the 1D

spherical Sedov test. It consists of a Cartesian block of elements, uniformly spaced

with n elements in the x, y, and z directions. Symmetry boundaries are on the

x = 0, y = 0, and z = 0 planes and an outflow boundary is on the other outer

surfaces. Data for this test is taken along a diagonal line characterized by the

vector {1, 1, 1}.

Test Theory

The Sedov test has a self-similar analytical solution. Sedov [84] provided a

general analytical closed-form solution to the problem. The theoretical solution

was computed using methods discussed in [83].

Test Results

The computations of the seven tests were performed on a fixed Eulerian mesh

using both the first-order method (predictor off) and the second-order scheme

(predictor on). The results are plotted in Figures 3.24–3.30 for the first-order

method, while second-order results are plotted in Figures 3.31–3.37. The numerical

results for the various grid resolutions are given by the colored symbols, while the

exact solution is represented by the solid black line. The tests were run using

four mesh resolutions, n = 30, 60, 120, 240, where n is the number of grid cells in

each coordinate direction. Thus for Test 7, when n = 240 there are a total of

2403 = 13, 824, 000 computational cells. Generally, it appears that the simulations

are converging to the theoretical value as the mesh resolution improves.
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The results for the first-order method are fairly consistent for each geometry.

The peak values for density, pressure, energy and velocity are under-predicted

using the coarse meshes, but the predictions appear to improve as the mesh is

refined. Note that the internal energy goes to infinity at the origin. Therefore,

the calculations are not expected to be accurate in that region. The first-order

scheme diffuses the shock front over many grid cells. But overall, the position of

the shock front is predicted accurately in all cases. It is interesting to note that

the calculated values for Test 4 are very similar to the values obtained for Test 2,

hence the axisymmetric formulation is working as expected.

Turning the predictor on results in much less diffusive behavior. The coarse

grids get much closer to the theoretical peak values and the shock is much sharper.

The predictor does not appear to cause oscillations in the solution.

The calculations on multidimensional meshes seem to have some large scale

fluctuations behind the shock. This is particularly evident in the velocity profiles

(e.g Figure 3.37(b)). This behavior is most obvious when the predictor is on, but

exists in the first-order calculations as well. This is due to angular variation in the

solution and appears to be a consequence of the orientation of the vector along

which the data was taken. The extent of the angular variation in the data can

be seen in the scatter plots shown in Figures 3.38–3.43. Unlike the earlier plots,

where data was taken along a specified line segment, the scatter plots gather data

at every computational cell and plot it verses the radial position. These plots

show that the shock position is predicted pretty consistently in all directions. The

predicted gas velocity behind the shock, however, shows lots of scatter. Boundary

effects could influence this behavior, although it is assumed that it is primarily

caused by mesh imprinting. This is a result of the finite-volume method used,

where shocks propagating across cell corners are not resolved as well as shocks

propagating directly across the cell faces. This could be improved by including the

influence of corner elements into the slope calculation used for the second-order

predictor.
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Test Conclusions

The following conclusions can be drawn from this calculation:

• The calculations show that the current code can be used to capture the blast

wave associated with the Sedov test.

• The shock position is predicted well, although the peak values behind the

shock are under-predicted. These values improve with additional mesh

resolution.

• Scatter plots reveal that there is some mesh imprinting in the current results.

This results in large angular variation in the solution.
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(a) Test 1 (b) Test 2

(c) Test 3 (d) Test 4

Figure 3.23: Initial mesh geometries for the Sedov tests.
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(e) Test 5 (f) Test 6

(g) Test 7

Figure 3.23: Initial mesh geometries for the Sedov tests. (cont)
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.24: Single-phase numerical results for the Sedov Test #1 (1D Cartesian
geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.25: Single-phase numerical results for the Sedov Test #2 (1D Cylindrical
geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.26: Single-phase numerical results for the Sedov Test #3 (1D Spherical
geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.27: Single-phase numerical results for the Sedov Test #4 (1D-
axisymmetric Cylindrical geometry). The tests used an Eulerian grid with the
predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.28: Single-phase numerical results for the Sedov Test #5 (2D Cylindrical
geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.29: Single-phase numerical results for the Sedov Test #6 (2D-
axisymmetric Spherical geometry). The tests used an Eulerian grid with the
predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.30: Single-phase numerical results for the Sedov Test #7 (3D Spherical
geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.31: Single-phase numerical results for the Sedov Test #1 (1D Cartesian
geometry). The tests used an Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.32: Single-phase numerical results for the Sedov Test #2 (1D Cylindrical
geometry). The tests used an Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.33: Single-phase numerical results for the Sedov Test #3 (1D Spherical
geometry). The tests used an Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.34: Single-phase numerical results for the Sedov Test #4 (1D-
axisymmetric Cylindrical geometry). The tests used an Eulerian grid with the
predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.35: Single-phase numerical results for the Sedov Test #5 (2D Cylindrical
geometry). The tests used an Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.36: Single-phase numerical results for the Sedov Test #6 (2D-
axisymmetric Spherical geometry). The tests used an Eulerian grid with the
predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.37: Single-phase numerical results for the Sedov Test #7 (3D Spherical
geometry). The tests used an Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.38: Single-phase numerical scatter-plot results for the Sedov Test #5 (2D
Cylindrical geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.39: Single-phase numerical scatter-plot results for the Sedov Test #6
(2D-axisymmetric Spherical geometry). The tests used an Eulerian grid with the
predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.40: Single-phase numerical scatter-plot results for the Sedov Test #7 (3D
Spherical geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.41: Single-phase numerical scatter-plot results for the Sedov Test #5 (2D
Cylindrical geometry). The tests used an Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.42: Single-phase numerical scatter-plot results for the Sedov Test #6
(2D-axisymmetric Spherical geometry). The tests used an Eulerian grid with the
predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.43: Single-phase numerical scatter-plot results for the Sedov Test #7 (3D
Spherical geometry). The tests used an Eulerian grid with the predictor on.
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3.1.5 Noh Test

Test Description

The Noh test is a one-dimensional gas implosion. The problem consists of a

single material, an ideal gas, which is initialized with a uniform radially-inward

velocity. This results in a shock at the origin which propagates outward as the

gas is brought to rest. The problem is symmetric, with spatial variation only in

the radial dimension. The problem can be specified in Cartesian, cylindrical, or

spherical coordinates, resulting in a planer, circular, or spherical shock respectively.

Test Setup

The background domain is filled with an ideal gas with γ = 5/3 and an initial

density of ρ0 = 1.0. The velocity is initialized with the flow going inward in the

radial direction such that the radial velocity is v0 = −1.0.

The solution was computed on the seven different meshes shown in Figure 3.44.

These meshes were chosen in order to compute the solution for all the coordinate

geometries (Cartesian, cylindrical, and spherical) as well as take advantage of

various levels of symmetry inherent in the problem.

Test 1, Figure 3.44(a), uses a three-dimensional mesh to compute the 1D

Cartesian Noh test. It consists of a row of n elements in the x direction and

a single zone in the y and z directions. Symmetry boundaries are on the y and z

planes. A symmetry wall is located at x = 0 and an outflow boundary is on the

other outer x surface.

Test 2, Figure 3.44(b), uses a three-dimensional mesh to compute the 1D

cylindrical Noh test. It consists of a row of n elements in the x direction and a single

zone in the y and z directions. The elements are arranged in a wedge geometry

with an angle of 4 degrees separating the y planes. Symmetry boundaries are on

the z planes and angle-wall boundaries are on the y planes. A symmetry wall is

located at x = 0 and an outflow boundary is on the other outer x surface. The

origin, x = 0, is actually displaced slightly in the x direction to avoid a degenerate

element.
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Test 3, Figure 3.44(c), uses a three-dimensional mesh to compute the 1D

spherical Noh test. It consists of a row of n elements in the x direction and a

single zone in the y and z directions. The elements are arranged in a pyramid

geometry with an angle of 4 degrees separating the y planes and z planes. Angle-

wall boundaries are on the y and z planes. A symmetry wall is located at x = 0

and an outflow boundary is on the other outer x surface. The origin, x = 0, is

actually displaced slightly in the x direction to avoid a degenerate element.

Test 4, Figure 3.44(d), uses a two-dimensional axisymmetric mesh to compute

the 1D cylindrical Noh test. It consists of a column of n elements in the y direction

and a single zone in the x direction. The elements are arranged in a Cartesian

block. Symmetry boundaries are on the x planes. A symmetry wall is located at

y = 0 and an outflow boundary is on the other outer y surface.

Test 5, Figure 3.44(e), uses a two-dimensional mesh to compute the 1D

cylindrical Noh test. It consists of a Cartesian block of elements, uniformly spaced

with n elements in the x and y directions. Symmetry boundaries are on the x = 0

and y = 0 planes and an outflow boundary is on the other outer surfaces. Data

for this test is taken along a diagonal line characterized by the vector {1, 1}.
Test 6, Figure 3.44(f), uses a two-dimensional axisymmetric mesh to compute

the 1D spherical Noh test. It consists of a Cartesian block of elements, uniformly

spaced with n elements in the x and y directions. Symmetry boundaries are on the

x = 0 and y = 0 planes and an outflow boundary is on the other outer surfaces.

Data for this test is taken along a diagonal line characterized by the vector {1, 1}.
Test 7, Figure 3.44(g), uses a three-dimensional mesh to compute the 1D

spherical Noh test. It consists of a Cartesian block of elements, uniformly spaced

with n elements in the x, y, and z directions. Symmetry boundaries are on the

x = 0, y = 0, and z = 0 planes and an outflow boundary is on the other outer

surfaces. Data for this test is taken along a diagonal line characterized by the

vector {1, 1, 1}.
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Test Theory

The Noh test has an analytical solution. Noh [85] provided a general analytical

closed-form solution to the problem. The theoretical solution was computed using

methods discussed in [83].

Test Results

The computations of the seven tests were performed on a fixed Eulerian mesh

using both the first-order method (predictor off) and the second-order scheme

(predictor on). The results are plotted in Figures 3.45–3.51 for the first-order

method, while second-order results are plotted in Figures 3.52–3.58. The numerical

results for the various grid resolutions are given by the colored symbols, while the

exact solution is represented by the solid black line. The tests were run using

four mesh resolutions, n = 30, 60, 120, 240, where n is the number of grid cells in

each coordinate direction. Thus for Test 7, when n = 240 there are a total of

2403 = 13, 824, 000 computational cells. Generally, it appears that the simulations

are converging to the theoretical value as the mesh resolution improves.

The results for the first-order method are fairly consistent for each geometry.

Accurately predicting the density behind the shock is a challenge for hydrocodes.

The computed density in the current calculations is generally under-predicted, but

improves with resolution. Although the theoretical state behind the shock should

be constant, the current results show lots of gradients. It is not understood why

this is, but that region appears under-resolved so additional mesh resolution could

help. The shock speed appears to be over-predicted using the first-order method.

Turning the predictor on appears to improve the predicted shock location.

Similar to the Sedov test results in §3.1.4, the results for the Noh test on

multidimensional meshes are expected to have some angular variation in the

solution. The extent of the angular variation in the data can be seen in the

scatter plots shown in Figures 3.59–3.64. Unlike the earlier plots, where data

was taken along a specified line segment, the scatter plots gather data at every

computational cell and plot it verses the radial position. Although there appears
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to be some scatter in the data, there is not as much angular variation as seen in the

Sedov tests. It also appears that angular variation is reduced when the predictor

is turned on.

Test Conclusions

The following conclusions can be drawn from this calculation:

• The calculations show that the current code can be used to capture the

implosion associated with the Noh test.

• Although the shock appears to be propagating properly in the current results,

the resulting state behind the shock is full of gradients. Therefore, it is

difficult to ascertain the accuracy of the method in those regions. It is

assumed that additional grid refinement would improve these calculations.

• Scatter plots reveal that there is some angular variation in the solution for

multidimensional meshes, but it is small compared to the Sedov test results.
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(a) Test 1 (b) Test 2

(c) Test 3 (d) Test 4

Figure 3.44: Initial mesh geometries for the Noh tests.
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(e) Test 5 (f) Test 6

(g) Test 7

Figure 3.44: Initial mesh geometries for the Noh tests. (cont)
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.45: Single-phase numerical results for the Noh Test #1 (1D Cartesian
geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.46: Single-phase numerical results for the Noh Test #2 (1D Cylindrical
geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.47: Single-phase numerical results for the Noh Test #3 (1D Spherical
geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.48: Single-phase numerical results for the Noh Test #4 (1D-axisymmetric
Cylindrical geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.49: Single-phase numerical results for the Noh Test #5 (2D Cylindrical
geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.50: Single-phase numerical results for the Noh Test #6 (2D-axisymmetric
Spherical geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.51: Single-phase numerical results for the Noh Test #7 (3D Spherical
geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.52: Single-phase numerical results for the Noh Test #1 (1D Cartesian
geometry). The tests used an Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.53: Single-phase numerical results for the Noh Test #2 (1D Cylindrical
geometry). The tests used an Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.54: Single-phase numerical results for the Noh Test #3 (1D Spherical
geometry). The tests used an Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.55: Single-phase numerical results for the Noh Test #4 (1D-axisymmetric
Cylindrical geometry). The tests used an Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.56: Single-phase numerical results for the Noh Test #5 (2D Cylindrical
geometry). The tests used an Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.57: Single-phase numerical results for the Noh Test #6 (2D-axisymmetric
Spherical geometry). The tests used an Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.58: Single-phase numerical results for the Noh Test #7 (3D Spherical
geometry). The tests used an Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.59: Single-phase numerical scatter-plot results for the Noh Test #5 (2D
Cylindrical geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.60: Single-phase numerical scatter-plot results for the Noh Test #6 (2D-
axisymmetric Spherical geometry). The tests used an Eulerian grid with the
predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.61: Single-phase numerical scatter-plot results for the Noh Test #7 (3D
Spherical geometry). The tests used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.62: Single-phase numerical scatter-plot results for the Noh Test #5 (2D
Cylindrical geometry). The tests used an Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.63: Single-phase numerical scatter-plot results for the Noh Test #6 (2D-
axisymmetric Spherical geometry). The tests used an Eulerian grid with the
predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.64: Single-phase numerical scatter-plot results for the Noh Test #7 (3D
Spherical geometry). The tests used an Eulerian grid with the predictor on.
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3.2 Multiple Phases

The following section exercises the current model on a number of tests with multiple

phases. The tests evaluate the model for use as a diffuse-interface model as well

as modeling sub-grid particulate flow. The tests are designed to exercise the non-

conservative terms in the governing equations as well as the relaxation terms.

The tests are set up to isolate specific multiphase features and evaluate them

individually.

The tests begin with a convergence study on the numerical method. This

is similar to the single-phase convergence test, but uses multiple phases. This

is followed by a couple shock-tube problems involving multiple materials. Each

material is treated as a separate phase, resulting in a diffuse interface between

the materials. Next are some tests of the relaxation models, which isolate and

evaluate the model’s heat-transfer and drag formulations. The drag model is next

evaluated for the propagation of a particle cloud through a gas. Finally, the model

is compared to experimental data of a shock wave passing through a gas-particle

mixture.
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3.2.1 Multiphase Smooth Test Problem

Test Description

The following test is used to verify the order of accuracy of the method for

a two-phase mixture. It is a numerical exercise and not designed to model any

physical reality. One of the implicit assumptions when discussing the order of a

numerical method is that the solution is smooth. Therefore, this test uses smooth

initial conditions. Chosen appropriately, smooth spatial variations at the beginning

of the run will result in transient behavior that remains smooth throughout the

simulation. Simulations are performed on a series of grids in order to compute the

convergence rate of the method. An example of a similar test in the literature is

found in Schwendeman et al. [48].

This test is similar to the problem discussed in §3.1.1. Whereas the first test

was limited to a single-phase material, the current test demonstrates the order of

accuracy for a simulation of two phases.

Test Setup

This test is designed to exercise the current multiphase algorithm for a two-

phase material, designated as phase a and phase b. Both phase materials use an

ideal-gas equation of state with γa = γb = 1.4. The material state is initialized

using the functions

εa = 2.5

εb = 2.5

pa = 1.0

pb = 1.0

xa = 0.5 − 0.1 tanh(20x − 8)

xb = 0.5 + 0.1 tanh(20x − 8)

ua = 0.1 − 0.2 tanh(20x − 12)

ub = 0.2 + 0.3 tanh(20x − 10)
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which are smooth on the domain of interest. The functional form of the initial

conditions is somewhat arbitrary, but they were chosen in order to obtain smoothly

varying transient behavior. The above conditions prescribe a varying volume

fraction, thus the phases are coupled and the non-conservative terms will contribute

to the dynamic response. No relaxation terms were used in these calculations, i.e.

phase interaction due to pressure relaxation, drag, and thermal conduction were

neglected.

The problem is designed to be one dimensional. It is modeled using a three-

dimensional mesh with a single zone in the y and z directions and symmetry

boundary conditions on the sides, resulting in a pseudo-1D flow in the x direction,

with x ∈ [0, 1]. The number of zones in the x direction are varied to look at mesh

convergence. Outflow boundary conditions are given at the boundaries x = 0 and

x = 1. An Eulerian mesh, with no mesh motion, is used for the simulations.

The solutions are compared at the simulation end time t = 0.05. A constant

time-step was used for these tests. The size of the time-step was chosen to be

∆t = 0.05
N

, where N is the number of grid cells. This was found to satisfy the

stability conditions at all times.

Test Theory

No analytic solution is available for this test. Smooth analytic solutions are

difficult to obtain in general. However, the exact solution can be approximated

with sufficient accuracy using the current numerical method with a very large

number of grid cells. For the current study 12, 800 grid cells were used to obtain

the baseline solution. Baseline solutions were obtained using both the first-order

and the second-order algorithms. The first-order solution is used as the baseline

for the first-order results on the coarser meshes, and the second-order solution is

used as the baseline for the second-order results.

Test Results

The final state of each phase was calculated using both the first-order and second-

order schemes. The first-order (predictor off) results are plotted in Figure 3.65,
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and the second-order (predictor on) results are plotted in Figure 3.66. Calculations

using four mesh-refinement levels were performed using 100, 200, 400, and 800 grid

cells. The numerical results for the various grid resolutions are given by the colored

symbols, while the high-resolution solution is designated as Theory and represented

by the solid black line.

All of the calculations resulted in a smooth final flow-field with no shocks or

contact discontinuities developing. The results also reveal spatial variation in all

of the plotted variables. It appears that the calculations are converging towards

an answer as the mesh is refined. The first-order solutions exhibit more variation

between the finest and coarsest grids than the second-order method.

Test Error Quantification and Convergence

The discretization error for the solution can be quantified using the fine-grid

solution as a baseline. The error (EN) is determined for a mesh-refinement level N

using the methods of §E. The calculated error for the current solutions has been

computed for the variables density, velocity, pressure, internal energy, and volume

fraction of both phases.

The errors are tabulated along with the associated convergence rates (rN)

in Table 3.7 for the first-order method. The results indicate that the first-order

scheme is indeed first-order since the convergence rates are very close to one.

The errors for the second-order method are shown in Table 3.8. The

convergence rate for a second-order scheme should have a value of two. However,

the current results point toward a convergence rate closer to one, thus indicating

first-order convergence rather than second-order. It is noted that the magnitude

of the error is lower for the second-order method than for the first-order.

In the single-phase version of this test (§3.1.1), second-order spatial convergence

was obtained by making a couple of modifications to the tests. These same

modifications were also tried on the current test. In the new tests, the time-

step was given a constant value of ∆t = 0.05
12800

for all grid levels. Also, the new

tests were run with the predictor on, but the slope limiters were disabled. The
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observed error and convergence rates for these new tests are tabulated in Table 3.9.

As seen, the test modifications have improved the convergence rates slightly, but

they are still far below second-order.

It is not currently understood why the second-order scheme fails to demonstrate

second-order convergence in this test, even after disabling the slope limiters. Since

the second-order spatial convergence was observed in the single-phase version of

this test, it is assumed that the cause is related to something specific within

the multiphase coupling terms. A possibility is that the use of the simplified

predictor (2.86) is causing the rate of convergence to drop. Perhaps using the full

predictor (2.85), including contributions from the multiphase nozzling terms, would

regain the desired order of accuracy. Resolving this issue will be an important

component of future research.

Test Conclusions

A test problem utilizing smooth initial conditions has been used to assess the

order of accuracy of the current method for a two-phase flow. The following

conclusions can be drawn from this calculation:

• The current first-order scheme demonstrates an observed convergence rate of

first-order.

• The second-order scheme does not demonstrate second-order convergence,

but rather exhibits convergence rates closer to first-order. Disabling the

slope limiters in the scheme appear to improve the convergence rates, but

they are still far below second order. The reasons for this are not currently

known, but some possible explanations have been proposed.

• The current test relies on one-dimensional geometries. It would be strait-

forward, although more computationally expensive, to extend the current

test to three dimensions.

• A more rigorous (and more complicated) technique for order-of-accuracy

verification is the method of manufactured solutions as discussed by
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Roache [78] and Salari et al. [79]. The idea here is to manufacture an exact

solution and then modify the original governing equations by adding source

terms in such a way that the manufactured function becomes the exact

solution. This could be a very useful way to track down why the current

algorithm is not achieving second-order accuracy.
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(a) gasa density (b) gasa velocity

(c) gasa pressure (d) gasa energy

(e) gasa volume fraction

Figure 3.65: Numerical results for the multiphase smooth test. The tests used an
Eulerian grid with the predictor off.
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(f) gasb density (g) gasb velocity

(h) gasb pressure (i) gasb energy

(j) gasb volume fraction

Figure 3.65: Numerical results for the multiphase smooth test. The tests used an
Eulerian grid with the predictor off. (cont)
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(a) gasa density (b) gasa velocity

(c) gasa pressure (d) gasa energy

(e) gasa volume fraction

Figure 3.66: Numerical results for the multiphase smooth test. The tests used an
Eulerian grid with the predictor on.
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(f) gasb density (g) gasb velocity

(h) gasb pressure (i) gasb energy

(j) gasb volume fraction

Figure 3.66: Numerical results for the multiphase smooth test. The tests used an
Eulerian grid with the predictor on. (cont)
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N EN rN

Gas A Density
100 3.82e-03
200 2.02e-03 0.92
400 1.03e-03 0.97
800 5.10e-04 1

Gas A Velocity
100 3.18e-03
200 1.72e-03 0.89
400 8.86e-04 0.96
800 4.39e-04 1

Gas A Pressure
100 5.37e-03
200 2.84e-03 0.92
400 1.45e-03 0.97
800 7.16e-04 1

Gas A Energy
100 3.29e-03
200 1.74e-03 0.92
400 8.86e-04 0.97
800 4.37e-04 1

Gas A Mass Fraction
100 1.00e-03
200 5.22e-04 0.94
400 2.64e-04 0.98
800 1.30e-04 1

Gas A Volume Fraction
100 3.46e-04
200 1.73e-04 1
400 8.58e-05 1
800 4.16e-05 1

Table 3.7: Numerical error and convergence rates for the multiphase smooth test.
The tests used an Eulerian grid with the predictor off.
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N EN rN

Gas B Density
100 4.21e-03
200 2.19e-03 0.94
400 1.11e-03 0.98
800 5.43e-04 1

Gas B Velocity
100 3.41e-03
200 1.81e-03 0.91
400 9.26e-04 0.97
800 4.57e-04 1

Gas B Pressure
100 5.94e-03
200 3.09e-03 0.94
400 1.56e-03 0.98
800 7.67e-04 1

Gas B Energy
100 5.57e-03
200 2.90e-03 0.94
400 1.47e-03 0.98
800 7.21e-04 1

Gas B Mass Fraction
100 1.00e-03
200 5.22e-04 0.94
400 2.64e-04 0.98
800 1.30e-04 1

Gas B Volume Fraction
100 3.46e-04
200 1.73e-04 1
400 8.58e-05 1
800 4.16e-05 1

Table 3.7: Numerical error and convergence rates for the multiphase smooth test.
The tests used an Eulerian grid with the predictor off. (cont)



182

N EN rN

Gas A Density
100 3.69e-04
200 1.60e-04 1.2
400 8.15e-05 0.98
800 4.12e-05 0.99

Gas A Velocity
100 4.56e-04
200 1.86e-04 1.3
400 8.88e-05 1.1
800 4.32e-05 1

Gas A Pressure
100 5.37e-04
200 2.35e-04 1.2
400 1.19e-04 0.99
800 6.01e-05 0.98

Gas A Energy
100 3.80e-04
200 1.76e-04 1.1
400 8.83e-05 0.99
800 4.39e-05 1

Gas A Mass Fraction
100 1.12e-04
200 5.45e-05 1
400 2.74e-05 0.99
800 1.37e-05 1

Gas A Volume Fraction
100 1.08e-04
200 5.61e-05 0.95
400 2.88e-05 0.96
800 1.43e-05 1

Table 3.8: Numerical error and convergence rates for the multiphase smooth test.
The tests used an Eulerian grid with the predictor on.
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N EN rN

Gas B Density
100 2.72e-04
200 1.63e-04 0.74
400 9.18e-05 0.83
800 4.74e-05 0.95

Gas B Velocity
100 4.82e-04
200 2.21e-04 1.1
400 1.06e-04 1.1
800 5.18e-05 1

Gas B Pressure
100 3.70e-04
200 2.25e-04 0.71
400 1.27e-04 0.82
800 6.60e-05 0.95

Gas B Energy
100 3.18e-04
200 1.84e-04 0.79
400 1.03e-04 0.84
800 5.33e-05 0.95

Gas B Mass Fraction
100 1.12e-04
200 5.45e-05 1
400 2.74e-05 0.99
800 1.37e-05 1

Gas B Volume Fraction
100 1.08e-04
200 5.61e-05 0.95
400 2.88e-05 0.96
800 1.43e-05 1

Table 3.8: Numerical error and convergence rates for the multiphase smooth test.
The tests used an Eulerian grid with the predictor on. (cont)
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N EN rN

Gas A Density
100 4.31e-04
200 1.65e-04 1.4
400 7.37e-05 1.2
800 3.45e-05 1.1

Gas A Velocity
100 4.61e-04
200 1.81e-04 1.3
400 8.37e-05 1.1
800 4.01e-05 1.1

Gas A Pressure
100 6.32e-04
200 2.46e-04 1.4
400 1.10e-04 1.2
800 5.16e-05 1.1

Gas A Energy
100 4.67e-04
200 1.91e-04 1.3
400 8.79e-05 1.1
800 4.20e-05 1.1

Gas A Mass Fraction
100 1.10e-04
200 4.01e-05 1.5
400 1.77e-05 1.2
800 8.30e-06 1.1

Gas A Volume Fraction
100 1.53e-04
200 7.10e-05 1.1
400 3.40e-05 1.1
800 1.63e-05 1.1

Table 3.9: Numerical error and convergence rates for the multiphase smooth test.
The tests used an Eulerian grid with the predictor on/no limiter.
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N EN rN

Gas B Density
100 3.10e-04
200 1.26e-04 1.3
400 5.96e-05 1.1
800 2.87e-05 1.1

Gas B Velocity
100 3.25e-04
200 1.52e-04 1.1
400 7.60e-05 1
800 3.76e-05 1

Gas B Pressure
100 4.29e-04
200 1.75e-04 1.3
400 8.25e-05 1.1
800 3.96e-05 1.1

Gas B Energy
100 3.35e-04
200 1.31e-04 1.4
400 6.07e-05 1.1
800 2.89e-05 1.1

Gas B Mass Fraction
100 1.10e-04
200 4.01e-05 1.5
400 1.77e-05 1.2
800 8.31e-06 1.1

Gas B Volume Fraction
100 1.53e-04
200 7.10e-05 1.1
400 3.40e-05 1.1
800 1.63e-05 1.1

Table 3.9: Numerical error and convergence rates for the multiphase smooth test.
The tests used an Eulerian grid with the predictor on/no limiter. (cont)
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3.2.2 Water-Air Shock Tube

Test Description

A classical one-dimensional shock tube with multiple materials is investigated

here. The test consists of high-pressure liquid water on the left and low-pressure

air on the right. This has become a standard test for multi-fluid algorithms. It

has been modeled using interface tracking methods as well as diffuse boundary

methods, including single-phase mixture models [86] and multiphase models [20,

22]. The current setup was based on the water-air test problem of Saurel and

Abgrall [19].

Test Setup

This test is a one-dimensional simulation of a shock tube with liquid water on

the left and air on the right. The current multiphase algorithm is used for this

simulation with each fluid being a separate phase. This leads to a diffuse boundary

between the materials. No relaxation terms were used in these calculations,

i.e. phase interaction due to pressure relaxation, drag, and thermal conduction

were neglected. Both fluids are represented by the stiffened-gas equation of state

(see §A.1.2). The water is represented by γ = 4.4 and P∞ = 6×108 and the air

is given by γ = 1.4 and P∞ = 0. The spatial domain of the problem is x ∈ [0, 1]

where the left and right states are separated by a discontinuity at position x = 0.7.

The solutions are compared at the simulation end time t = 229×10−6. The initial

conditions are tabulated in Table 3.10.

The problem is one dimensional by definition. It is modeled using a three-

dimensional mesh with a single zone in the y and z directions and symmetry

boundary conditions on the sides, resulting in a pseudo-1D flow in the x direction.

The number of zones in the x direction are varied to look at mesh convergence.

Outflow boundary conditions are given at the boundaries x = 0 and x = 1.

This test problem is run on both a fixed and moving mesh in order to compare

the two methodologies. For the ALE problem, the mesh motion is predefined and

is not dependent on the motion of the material. The motion is defined such that
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the velocity of the center node (initially at x = 0.5) translates to the right at

a constant speed. The center node’s translation speed is specified such that it

will travel one-quarter of the distance to the end of the domain at the end of the

simulation.

Test Theory

An algorithm for an exact Riemann solver for the stiffened-gas equation of state

is given by Ivings et al. [87]. This is extended for multiple materials to obtain the

exact solution. The resulting solution assumes distinct materials with a discrete

material interface. Thus, there is no concept of a separate state for each phase.

Therefore, the theoretical values will be plotted against mixture quantities for

comparison.

Test Results

The results of the simulations are plotted in Figures 3.67–3.70. The numerical

results for the various grid resolutions are given by the colored symbols, while

the exact solution is represented by the solid black line. The computations were

performed using both the first-order method (predictor off) and the second-order

scheme (predictor on). Calculations were done using a fixed Eulerian mesh and a

moving ALE mesh.

Similar to the Sod problem, this test consists of a rightward traveling shock,

a rarefaction wave on the left, and in the middle there is a contact discontinuity

traveling to the right following the shock. This is a very sever problem with large

pressure and density differences in the materials.

The first-order scheme (Figure 3.67) exhibits some numerical diffusion in the

shock and the contact discontinuity. In fact, there is no distinct separation between

the shock and the contact surface. Numerical diffusion has also flattened out the

rarefaction wave. The propagation speed of the various waves appears to be correct

as the average position of the waves is close to the theoretical position. The volume

fraction of the gas is plotted in Figure 3.67(e). This shows that the mixture region

of the material interface has been diffused over several cells. This helps explain
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the diffusive nature of the contact surface in the mixture quantities. However,

even though these calculations exhibit some numerical diffusion of the material

interface, it is observed that this is expected and the mixture quantities are still

represented with the accuracy one would expect with a first-order method. It

also appears that the solutions are converging to the exact solution as the grid is

refined.

The numerical results of the ALE water-air test are plotted in Figure 3.69. The

results and convergence are comparable to the fixed-grid simulations, although the

ALE method seems to better resolve the shock and contact surface. This is due

to additional mesh resolution moving into the shock region, and less up-winding

resulting in less diffusion.

The results with the predictor on are shown in Figure 3.69 for an Eulerian grid

and in Figure 3.70 for an ALE grid. The second-order method shows less diffusion

at the discontinuities, especially in the calculation of the volume fraction. There

appears to be some slight under/over-shoots in the variables at the ends of the

rarefaction and the shock, but these are very minor perturbations.

Test Conclusions

The following conclusions can be drawn from this calculation:

• The diffuse interface treatment in the current algorithm adequately computes

the mixture quantities in the multi-material problem.

• The calculations show similar behavior for the water-air problem run on fixed

or moving meshes. Thus, it appears that the ALE techniques used here work

properly for this test.
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(a) density (b) velocity

(c) pressure (d) energy

(e) volume fraction

Figure 3.67: Multiphase numerical results for the water-air shock-tube test. The
tests used an Eulerian grid with the predictor off.



190

(a) density (b) velocity

(c) pressure (d) energy

(e) volume fraction

Figure 3.68: Multiphase numerical results for the water-air shock-tube test. The
tests used an ALE grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

(e) volume fraction

Figure 3.69: Multiphase numerical results for the water-air shock-tube test. The
tests used an Eulerian grid with the predictor on.
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(a) density (b) velocity

(c) pressure (d) energy

(e) volume fraction

Figure 3.70: Multiphase numerical results for the water-air shock-tube test. The
tests used an ALE grid with the predictor on.



193

Variable Value

x0 0.7
t0 229×10−6

ρL 1000
uL 0.0
pL 1×109

ρR 50
uR 0.0
pR 1×105

Table 3.10: Initial conditions for the water-air shock-tube problem
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3.2.3 Shock-Interface Interaction

Test Description

This is a one-dimensional shock-tube problem with multiple materials. The

problem was initially proposed by Banks et al. [88] as a single-phase multi-fluid

test. The test consists of a low-density gas on the left and a high-density gas on

the right. A shock is initialized in the left material, which propagates to the right

through the material interface.

Test Setup

This test is a one-dimensional simulation of a shock tube with a spatial domain of

x ∈ [0, 1]. It contains two materials (gas-a and gas-b) separated by a discontinuity

initially located at x = 0.5. The interface is translating to the right with a velocity

of 0.1 relative to the fixed lab frame. The domain is initially separated into three

regions. On the left in Region 1 (x ∈ [0.0, 0.1]) is gas-a at a high pressure; in

the middle in Region 2 (x ∈ (0.1, 0.5]) is gas-a at ambient pressure; on the right

in Region 3 (x ∈ (0.5, 1.0]) is gas-b at ambient pressure. The high pressure in

Region 1 drives a right-traveling shock wave with a shock Mach number of 2.0.

This shock wave travels through gas-a, eventually interacting with the material

interface, resulting in a reflected shock going back into gas-a and a transmitted

shock in gas-b.

The current multiphase algorithm is used for this simulation with gas-

a and gas-b modeled as separate phases. This leads to a diffuse boundary

between the materials. No relaxation terms were used in these calculations, i.e.

phase interaction due to pressure relaxation, drag, and thermal conduction were

neglected. Both fluids are represented with an ideal-gas equation of state. The

gas-a is represented with γ = 1.35 and a specific heat Cv = 2.4, while gas-b has

γ = 5.0 and Cv = 1.5. The initial conditions are tabulated in Table 3.11. The

solutions are compared at the simulation end time t = 0.25.

The problem is one dimensional by definition. It is modeled using an Eulerian

three-dimensional mesh with a single zone in the y and z directions and symmetry
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boundary conditions on the sides, resulting in a pseudo-1D flow in the x direction.

The number of zones in the x direction are varied to look at mesh convergence.

Outflow boundary conditions are given at the boundaries x = 0 and x = 1.

Test Theory

The initial state of the gas behind the shock (Region 1) can be computed

using the ideal-gas normal-shock relations described in Zucker [89]. After the

shock impacts the material interface, the resulting state can be determined by

solving suitable Riemann problems as discussed in Toro [53]. The flow properties

are determined at every spatial location using the method of characteristics, as

discussed in Zel’dovich and Raizer [90].

Test Results

The results of the simulations are plotted in Figures 3.71–3.72. The numerical

results for the various grid resolutions are given by the colored symbols, while

the exact solution is represented by the solid black line. The computations were

performed using both the first-order method (predictor off) and the second-order

scheme (predictor on). Calculations were done using a fixed Eulerian mesh.

The results of this test consist of a leftward traveling reflected shock, a rightward

traveling transmitted shock, and a contact discontinuity in the middle traveling

to the right. The first-order approximation (Figure 3.71) exhibits some numerical

diffusion in the discontinuities. The simulations with the predictor on (Figure 3.72)

resolve the discontinuities better. The propagation speed of the various waves

appears to be correct in all simulations as the average position of the waves is close

to the theoretical position. It is observed that there exists a small perturbation in

the results to the far left. This was caused by start-up errors and was observed

by Banks [88] as well. It is noted that the undershoot in density observed by

Banks is not present with the current method. The volume fraction plots show

that the mixture region of the material interface has been diffused over several

cells. Despite the diffuse interface, it is observed that the mixture quantities are

still represented accurately. It also appears that the solutions are converging to



196

the exact solution as the grid is refined.

Test Conclusions

The following conclusions can be drawn from this calculation:

• The diffuse-interface treatment in the current algorithm adequately computes

the mixture quantities in the multi-material problem.

• The discrete equation method does not exhibit the density undershoot

discussed for the uncorrected scheme in Banks et al. [88].
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(a) density (b) velocity

(c) pressure (d) temperature

(e) volume fraction

Figure 3.71: Multiphase numerical results for the shock-interface test. The tests
used an Eulerian grid with the predictor off.
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(a) density (b) velocity

(c) pressure (d) temperature

(e) volume fraction

Figure 3.72: Multiphase numerical results for the shock-interface test. The tests
used an Eulerian grid with the predictor on.
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Variable Region 1 Region 2 Region 3

ρ 2.7647 1.0 1.9
u 1.5833 0.1 0.1
p 4.4468 1.0 1.0

Table 3.11: Initial conditions for the shock-interface test problem.
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3.2.4 Multiphase Temperature Relaxation

Test Description

This is a test of the multiphase temperature-relaxation (heat-transfer) model.

It is a single-element problem with a gas and solid phase. The only interaction

between the phases occurs due to temperature relaxation.

Test Setup

This problem consists of a single gas phase (a) and a single solid phase (b).

The geometry is a single element with outflow boundary conditions enforced on all

external faces. Thus, there are no flow gradients possible and the hydrodynamic

equations are trivially satisfied. Initially, the phases are at different temperatures,

resulting in conductive heat transfer. The gas phase is initially at temperature

T a = 1 with a mass fraction of xa = 0.8, and the solid phase is initially at

temperature T b = 2 with a mass fraction of xb = 0.2. The specific heats of both

phases are one (Cva = Cvb = 1.0). The thermal relaxation time is given by a

constant value of τ = 0.5.

Test Theory

Crowe et al. [4] provides an analytical expression for the thermal response of a

discrete phase (d) embedded within a continuous phase (c)

dTd

dt
=

1

τ
(Tc − Td)

where the thermal response time is given by τ . This expression has been extended

to multiple phases in a closed system in §2.1.14.2. For the two-phase problem of

interest here, the governing equations reduce to

dTa

dt
= − c

τ
(Ta − Tb)

dTb

dt
=

1

τ
(Ta − Tb)

where

c =
xbCvb

xaCva
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is a constant. From the conditions given above, c = 0.25. By assuming an

exponential form and utilizing the initial conditions, the solution to this system is

found to be

Ta = T a +
c

c + 1

(

T a − T b

)

(

e−βt − 1
)

Tb = T b −
1

c + 1

(

T a − T b

)

(

e−βt − 1
)

where β = c+1
τ

= 2.5.

Test Results

The calculated temperatures show good agreement with the theoretical solution.

Calculations were performed using the backward-Euler and the analytical

integration methods. The simulations were all run over a time interval of one using

constant time-steps. In order to show the temporal convergence of the schemes, the

simulations used three different time-step sizes, such that 10, 20, and 40 time-steps

were used for the simulations.

The backward-Euler results are shown in Figure 3.73. As the temporal

refinement is improved, the method appears to be converging toward the theoretical

solution. It is expected that the solution rate should be first order for the backward-

Euler method.

Results from the analytical integration method are shown in Figure 3.74. As

expected, the results are nearly identical to the theoretical values. This is because

the analytical method solves the theoretical equations directly. Thus, for this

problem there are no discretization errors associated with this method. Any errors

in these calculations are the result of round-off errors.

Test Error Quantification and Convergence

There is a theoretical solution to this problem. Therefore, the discretization

error for the solution can be quantified. Since there is no spatial variation in the

solution to this problem, spatial-discretization error does not contribute to the

total error of the calculation and the time-discretization error should dominate.

The error (EN) is determined for time-step refinement level N using the
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methods of §E. The calculated error has been computed for the temperature

of both phases separately. These errors are tabulated in Table 3.12 for the

backward-Euler method and Table 3.13 for the calculations using the analytic

integration method. The convergence rates (rN) are also tabulated. As expected,

the convergence rates for the backward-Euler method are around one, indicating

first-order convergence. On the other hand, the error for the analytic solution

increases as the time-step is decreased, thus the solution does not converge with

refinement. This is because the code is computing an exact solution analytically.

Therefore, there is no time-discretization error in these calculations and the error

in the calculation is dominated by round-off errors. This results in error norms

which are many orders of magnitude smaller for the analytic method compared to

the backward Euler.

Test Conclusions

The following conclusions can be drawn from this calculation:

• The backward-Euler temperature-relaxation method provides a reasonable

solution for this problem. It converges toward the theoretical solution as

expected for a first-order method.

• The analytical temperature-relaxation method provides an exact solution for

this problem.
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Figure 3.73: Multiphase numerical results for the temperature-relaxation test.
Phase temperatures were computed using the backward-Euler method. The higher
temperature curves represent the solid (phase b) and the lower temperature curves
represent the gas (phase a).
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Figure 3.74: Multiphase numerical results for the temperature-relaxation test.
Phase temperatures were computed using the analytical method. The higher
temperature curves represent the solid (phase b) and the lower temperature curves
represent the gas (phase a).
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N EN rN

Phase a Temperature
10 6.90e-03
20 3.57e-03 0.95
40 1.82e-03 0.97

Phase b Temperature
10 2.76e-02
20 1.43e-02 0.95
40 7.26e-03 0.97

Table 3.12: Numerical error and convergence rates for the temperature-relaxation
test. Phase temperatures were computed using the backward-Euler method.
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N EN rN

Phase a Temperature
10 5.80e-13
20 1.18e-12 -1
40 2.36e-12 -1

Phase b Temperature
10 2.33e-12
20 4.71e-12 -1
40 9.44e-12 -1

Table 3.13: Numerical error and convergence rates for the temperature-relaxation
test. Phase temperatures were computed using the analytical method.
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3.2.5 Multiphase Nusselt Number

Test Description

This tests the multiphase temperature-relaxation (heat-transfer) model and

Nusselt-number formulations. It is a single-element problem with a gas and

solid phase. The only interaction between the phases occurs due to temperature

relaxation.

Test Setup

This problem consists of a single gas phase (a) and a single solid phase (b).

The geometry is a single element with outflow boundary conditions enforced on all

external faces. Thus, there are no flow gradients possible and the hydrodynamic

equations are trivially satisfied. Initially, the phases are at different temperatures,

resulting in conductive heat transfer. The gas phase is initially at temperature

T a = 1 and the solid phase is initially at temperature T b = 2. The specific heats

of both phases are one (Cva = Cvb = 1.0). The specific heats, conductivity, and

viscosity are all taken as constant in this test.

The problem is run with a variety of empirical relations for the Nusselt number

in order to verify that they are all implemented correctly. The functional forms

for the Nusselt number are discussed in §C. Since many of the relations for the

Nusselt number depend on Reynolds number, a velocity difference of one is given

to the materials. Since the velocity and all other parameters are constant, the

Reynolds number is also constant with a value of 2500. The tests are repeated for

three different porosity levels with gas mass fractions of 95%, 70%, and 20%.

Test Theory

The analytical expression for the temperature evolution of a multiphase mixture

from heat transfer between the phases is discussed in §2.1.14.2. For the two-phase

problem of interest here, the governing equations reduce to

dTa

dt
= − c

τ
(Ta − Tb)

dTb

dt
=

1

τ
(Ta − Tb)
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where c = (xbCvb)
(xaCva)

. Since the mass fractions and specific heats do not change during

the simulation, c is a constant in this problem.

In §3.2.4 the relaxation time, τ , was constant. In the current problem however,

τ is no longer a constant, but is determined by the definition

τ =
1

12

ρbCvbd
2
b

ka

2

Nu

where the Nusselt number (Nu) itself depends on flow properties of the fluid

surrounding the particle, such as Reynolds number, Prandtl number, and porosity.

As such, τ could potentially vary with time and the analytic expression used for

comparison in §3.2.6 is not valid. Therefore, rather than obtaining an analytic

expression for comparison, an accurate numerical solution of the above system of

ODE’s is used. The numerical solution is calculated using the high-order Adams

method in SciPy [91]. Since the method used to integrate the multiphase heat

transfer terms is expected to be at most first-order accurate in time, the numerical

solution is an adequate representation of the exact theoretical solution. Note that

although τ is not constant in general, for this particular test problem it is constant

since none of the models used are temperature dependent.

Test Results

The calculated temperatures show good agreement with the high-order

numerical solution. Calculations were performed using the backward-Euler and the

analytical integration methods. The simulations were all run over a time interval

of one using constant time-steps. In order to show the temporal convergence of

the schemes, the simulations used three different time-step sizes, such that 10, 20,

and 40 time-steps were used for the simulations. The tests were repeated for three

different porosity levels to see the effect of volume fraction.

The results for each Nusselt-number law are plotted in the following figures.

Each figure contains six subplots which are organized in a table with two columns

and three rows. Each subplot compares the high-order solution (solid line) to the

current algorithm’s solution (colored symbols) for three different time-step sizes.

The left column contains the results using the backward-Euler time integration;
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while the right column uses the analytic time integration. Each row plots the data

from a specific porosity level: the top row contains data for a gas mass fraction of

95%, the middle row 70%, and the bottom row 20%. The Nusselt-number models

tested are the fixed relaxation constant (Figure 3.75), constant Nusselt number

(Figure 3.76), and the Ranz-Marshall (Figure 3.77).

As would be expected, the results for a fixed relaxation constant are similar to

those obtained in §3.2.4. The backward-Euler method converges to the theoretical

solution as the time-step size is reduced. The analytic integration method

reproduced the exact solution for all time-refinement levels.

For the current test configuration, the Nusselt-number models result in a

constant relaxation time. Thus, the results for all Nusselt-number models exhibit

similar behavior as the fixed relaxation time option.

Test Error Quantification and Convergence

The discretization error for the solution can be quantified using the high-

accuracy numerical solution. Since there is no spatial variation in the solution

to this problem, spatial-discretization error does not contribute to the total error

of the calculation and the time-discretization error should dominate.

The error (EN) is determined for time-step refinement level N using the

methods of §E. The calculated error has been computed for the temperature

of both phases separately. These errors are tabulated in Tables 3.14–3.16. The

convergence rates (rN) are also tabulated. These tables are organized in rows and

columns similar to the plots discussed earlier in this section.

It is expected that the methods should produce at least first-order convergence

in each of the tests. Since all Nusselt-number models result in a constant relaxation

time, the analytic integration method essentially reproduces the exact solution,

and therefore the errors are dominated by round-off and the solutions do not

exhibit convergence. In fact, for the current tests, the analytic method is expected

to give more accurate results then the high-accuracy numerical solution used

for the exact solution. The resulting convergence rates for the backward-Euler
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integration method appear to indicate first-order convergence, although in some

cases the solutions do not appear to have reached the asymptotic regime and so the

convergence is less than first order. It is expected that running additional cases

with smaller time-step would exhibit first-order behavior. This was verified by

running the tests with 1000, 2000, and 4000 time-step where first-order convergence

was observed in all cases.

Test Conclusions

The following conclusions can be drawn from this calculation:

• The numerical results seem to adequately predict the theoretical solutions

for all Nusselt-number laws. In general, the solutions appear to exhibit first-

order convergence behavior as expected.
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(a) beuler, xa = 0.95 (b) analytic, xa = 0.95

(c) beuler, xa = 0.70 (d) analytic, xa = 0.70

(e) beuler, xa = 0.20 (f) analytic, xa = 0.20

Figure 3.75: Multiphase numerical results for the Nusselt-number tests. The
Nusselt-number law used a fixed relaxation constant. The higher temperature
curves represent the solid (phase b) and the lower temperature curves represent
the gas (phase a).
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(a) beuler, xa = 0.95 (b) analytic, xa = 0.95

(c) beuler, xa = 0.70 (d) analytic, xa = 0.70

(e) beuler, xa = 0.20 (f) analytic, xa = 0.20

Figure 3.76: Multiphase numerical results for the Nusselt-number tests. The
Nusselt-number law used a constant Nusselt number. The higher temperature
curves represent the solid (phase b) and the lower temperature curves represent
the gas (phase a).
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(a) beuler, xa = 0.95 (b) analytic, xa = 0.95

(c) beuler, xa = 0.70 (d) analytic, xa = 0.70

(e) beuler, xa = 0.20 (f) analytic, xa = 0.20

Figure 3.77: Multiphase numerical results for the Nusselt-number tests. The
Nusselt-number law used a Ranz-Marshall correlation. The higher temperature
curves represent the solid (phase b) and the lower temperature curves represent
the gas (phase a).
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N EN rN

Phase a Temperature
10 1.52e-03
20 7.83e-04 0.96
40 3.97e-04 0.98

Phase b Temperature
10 2.90e-02
20 1.49e-02 0.96
40 7.55e-03 0.98

(a) beuler, xa = 0.95

N EN rN

Phase a Temperature
10 1.36e-09
20 1.13e-09 0.27
40 1.12e-09 0.0043

Phase b Temperature
10 2.59e-08
20 2.14e-08 0.27
40 2.13e-08 0.0043

(b) analytic, xa = 0.95

N EN rN

Phase a Temperature
10 1.13e-02
20 5.85e-03 0.95
40 2.98e-03 0.97

Phase b Temperature
10 2.63e-02
20 1.36e-02 0.95
40 6.96e-03 0.97

(c) beuler, xa = 0.70

N EN rN

Phase a Temperature
10 1.11e-08
20 9.66e-09 0.2
40 9.54e-09 0.019

Phase b Temperature
10 2.59e-08
20 2.25e-08 0.2
40 2.23e-08 0.019

(d) analytic, xa = 0.70

N EN rN

Phase a Temperature
10 5.00e-02
20 2.79e-02 0.84
40 1.48e-02 0.91

Phase b Temperature
10 1.25e-02
20 6.97e-03 0.84
40 3.70e-03 0.91

(e) beuler, xa = 0.20

N EN rN

Phase a Temperature
10 9.81e-09
20 9.59e-09 0.033
40 1.02e-08 -0.096

Phase b Temperature
10 2.45e-09
20 2.40e-09 0.033
40 2.56e-09 -0.096

(f) analytic, xa = 0.20

Table 3.14: Numerical error and convergence rates for the Nusselt-number tests.
The Nusselt-number law used a fixed relaxation constant.
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N EN rN

Phase a Temperature
10 5.35e-05
20 2.61e-05 1
40 1.29e-05 1

Phase b Temperature
10 1.02e-03
20 4.95e-04 1
40 2.44e-04 1

(a) beuler, xa = 0.95

N EN rN

Phase a Temperature
10 1.93e-11
20 1.55e-11 0.32
40 1.36e-11 0.18

Phase b Temperature
10 3.66e-10
20 2.94e-10 0.32
40 2.59e-10 0.18

(b) analytic, xa = 0.95

N EN rN

Phase a Temperature
10 5.57e-04
20 2.72e-04 1
40 1.35e-04 1

Phase b Temperature
10 1.30e-03
20 6.35e-04 1
40 3.14e-04 1

(c) beuler, xa = 0.70

N EN rN

Phase a Temperature
10 3.78e-10
20 3.05e-10 0.31
40 2.69e-10 0.18

Phase b Temperature
10 8.82e-10
20 7.12e-10 0.31
40 6.28e-10 0.18

(d) analytic, xa = 0.70

N EN rN

Phase a Temperature
10 1.07e-02
20 5.37e-03 1
40 2.69e-03 1

Phase b Temperature
10 2.68e-03
20 1.34e-03 1
40 6.72e-04 1

(e) beuler, xa = 0.20

N EN rN

Phase a Temperature
10 2.48e-08
20 2.36e-08 0.072
40 2.30e-08 0.034

Phase b Temperature
10 6.20e-09
20 5.89e-09 0.072
40 5.76e-09 0.034

(f) analytic, xa = 0.20

Table 3.15: Numerical error and convergence rates for the Nusselt-number tests.
The Nusselt-number law used a constant Nusselt number.
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N EN rN

Phase a Temperature
10 1.89e-03
20 9.82e-04 0.95
40 5.01e-04 0.97

Phase b Temperature
10 3.59e-02
20 1.87e-02 0.95
40 9.52e-03 0.97

(a) beuler, xa = 0.95

N EN rN

Phase a Temperature
10 1.52e-09
20 1.21e-09 0.32
40 1.12e-09 0.12

Phase b Temperature
10 2.88e-08
20 2.30e-08 0.32
40 2.12e-08 0.12

(b) analytic, xa = 0.95

N EN rN

Phase a Temperature
10 1.33e-02
20 6.98e-03 0.93
40 3.58e-03 0.96

Phase b Temperature
10 3.10e-02
20 1.63e-02 0.93
40 8.36e-03 0.96

(c) beuler, xa = 0.70

N EN rN

Phase a Temperature
10 7.95e-09
20 9.02e-09 -0.18
40 8.22e-09 0.13

Phase b Temperature
10 1.86e-08
20 2.10e-08 -0.18
40 1.92e-08 0.13

(d) analytic, xa = 0.70

N EN rN

Phase a Temperature
10 5.40e-02
20 3.14e-02 0.78
40 1.69e-02 0.89

Phase b Temperature
10 1.35e-02
20 7.84e-03 0.78
40 4.24e-03 0.89

(e) beuler, xa = 0.20

N EN rN

Phase a Temperature
10 7.66e-09
20 7.02e-09 0.12
40 8.07e-09 -0.2

Phase b Temperature
10 1.91e-09
20 1.76e-09 0.12
40 2.02e-09 -0.2

(f) analytic, xa = 0.20

Table 3.16: Numerical error and convergence rates for the Nusselt-number tests.
The Nusselt-number law used a Ranz-Marshall correlation.
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3.2.6 Multiphase Velocity Relaxation

Test Description

This is a test of the multiphase velocity-relaxation (drag) model. It is a single-

element problem with a gas and solid phase. The only interaction between the

phases occurs due to velocity relaxation.

Test Setup

This problem consists of a single gas phase (a) and a single solid phase (b).

The geometry is a single element with outflow boundary conditions enforced on all

external faces. Thus, there are no flow gradients possible and the hydrodynamic

equations are trivially satisfied. Initially, the phases are at different velocities,

resulting in momentum exchange through drag. The gas phase is initially at

velocity Ua = 1 with a mass fraction of xa = 0.8, and the solid phase is initially

at velocity U b = 2 with a mass fraction of xb = 0.2. The velocity relaxation time

is given by a constant value of τ = 0.5.

Test Theory

Crowe et al. [4] provides an analytical expression for the velocity evolution of a

discrete phase (d) embedded within a continuous phase (c)

d~ud

dt
=

1

τ
(~uc − ~ud)

where the velocity response time is given by τ . This expression has been extended

to multiple phases in a closed system in §2.1.14.3. For the two-phase problem of

interest here, the governing equations reduce to

d~ua

dt
= − c

τ
(~ua − ~ub)

d~ub

dt
=

1

τ
(~ua − ~ub)

where

c =
xb

xa

is a constant. From the conditions given above, c = 0.25. By assuming an

exponential form and utilizing the initial conditions, the solution to this system is
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found to be

~ua = Ua +
c

c + 1

(

Ua − U b

)

(

e−βt − 1
)

~ub = U b −
1

c + 1

(

Ua − U b

)

(

e−βt − 1
)

where β = c+1
τ

= 2.5.

Test Results

The calculated velocities show good agreement with the theoretical solution.

Calculations were performed using the backward-Euler and the analytical

integration methods. The simulations were all run over a time interval of one using

constant time-steps. In order to show the temporal convergence of the schemes, the

simulations used three different time-step sizes, such that 10, 20, and 40 time-steps

were used for the simulations.

The backward-Euler results are shown in Figure 3.78. As the temporal

refinement is improved, the method appears to be converging toward the theoretical

solution. It is expected that the solution rate should be first order for the backward-

Euler method.

Results from the analytical integration method are shown in Figure 3.79. As

expected, the results are nearly identical to the theoretical values. This is because

the analytical method solves the theoretical equations directly. Thus, for this

problem there are no discretization errors associated with this method. Any errors

in these calculations are the result of round-off errors.

Test Error Quantification and Convergence

There is a theoretical solution to this problem. Therefore, the discretization

error for the solution can be quantified. Since there is no spatial variation in the

solution to this problem, spatial-discretization error does not contribute to the

total error of the calculation and the time-discretization error should dominate.

The error (EN) is determined for time-step refinement level N using the

methods of §E. The calculated error has been computed for the velocity of both

phases separately. These errors are tabulated in Table 3.17 for the backward-Euler
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method and Table 3.18 for the calculations using the analytic integration method.

The convergence rates (rN) are also tabulated. As expected, the convergence rates

for the backward-Euler method are around one, indicating first-order convergence.

On the other hand, the error for the analytic solution increases as the time-

step is decreased, thus the solution does not converge with refinement. This is

because the code is computing an exact solution analytically. Therefore, there is

no time-discretization error in these calculations and the error in the calculation is

dominated by round-off errors. This results in error norms which are many orders

of magnitude smaller for the analytic method compared to the backward Euler.

Test Conclusions

The following conclusions can be drawn from this calculation:

• The backward-Euler velocity-relaxation method provides a reasonable

solution for this problem. It converges toward the theoretical solution as

expected for a first-order method.

• The analytical velocity-relaxation method provides an exact solution for this

problem.
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Figure 3.78: Multiphase numerical results for the velocity-relaxation test. Phase
velocities were computed using the backward-Euler method. The higher velocity
curves represent the solid (phase b) and the lower velocity curves represent the gas
(phase a).
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Figure 3.79: Multiphase numerical results for the velocity-relaxation test. Phase
velocities were computed using the analytical method. The higher velocity curves
represent the solid (phase b) and the lower velocity curves represent the gas (phase
a).
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N EN rN

Phase a Velocity
10 6.90e-03
20 3.57e-03 0.95
40 1.82e-03 0.97

Phase b Velocity
10 2.76e-02
20 1.43e-02 0.95
40 7.26e-03 0.97

Table 3.17: Numerical error and convergence rates for the velocity-relaxation test.
Phase velocities were computed using the backward-Euler method.
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N EN rN

Phase a Velocity
10 5.80e-13
20 1.18e-12 -1
40 2.36e-12 -1

Phase b Velocity
10 2.33e-12
20 4.71e-12 -1
40 9.44e-12 -1

Table 3.18: Numerical error and convergence rates for the velocity-relaxation test.
Phase velocities were computed using the analytical method.
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3.2.7 Multiphase Drag Coefficient

Test Description

This tests the multiphase velocity-relaxation (drag) model and drag coefficient

formulations. It is a single-element problem with a gas and solid phase. The only

interaction between the phases occurs due to velocity relaxation.

Test Setup

This problem consists of a single gas phase (a) and a single solid phase (b).

The geometry is a single element with outflow boundary conditions enforced on all

external faces. Thus, there are no flow gradients possible and the hydrodynamic

equations are trivially satisfied. Initially, the phases are at different velocities,

resulting in momentum exchange through drag. The gas phase is initially at

velocity Ua = 1 and the solid phase is initially at velocity U b = 2.

The problem is run with a variety of empirical relations for the drag coefficient

in order to verify that they are all implemented correctly. The functional forms for

the drag coefficient are discussed in §B. Since many of the relations for the drag

coefficient depend on Reynolds number, it is desirable for the tests to exercise

all relevant regimes. To do this, the problem is initialized such that the initial

Reynolds number is 2500. As the simulation advances, drag causes the relative

velocity between the phases to decrease, thus reducing the Reynolds number. The

variation in Reynolds number between zero and 2500 is adequate to exercise all

discontinuous switches in the drag relations. Since many of the drag-coefficient

forms also depend on the porosity of the material (volume fraction), the tests are

repeated for three different porosity levels with gas mass fractions of 95%, 70%,

and 20%.

Test Theory

The analytical expression for the velocity evolution of a multiphase mixture due

to drag is discussed in §2.1.14.3. For the two-phase problem of interest here, the
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governing equations reduce to

dua

dt
= − c

τ
(ua − ub)

dub

dt
=

1

τ
(ua − ub)

where c = xb

xa
. Since the mass fractions do not change during the simulation, c is

a constant in this problem.

In §3.2.6 the relaxation time, τ , was constant. In the current problem however,

τ is no longer a constant, but is determined by the definition

τ =
4

3

ρb

ρa

db

CD (ua − ub)

where db is the diameter of the particle. The drag coefficient (CD) depends on flow

properties of the fluid surrounding the particle, such as Reynolds number, Mach

number, and porosity. As such, τ varies with time and the analytic expression used

for comparison in §3.2.6 is not valid. Therefore, rather than obtaining an analytic

expression for comparison, an accurate numerical solution of the above system of

ODE’s is used. The numerical solution is calculated using the high-order Adams

method in SciPy [91]. Since the method used to integrate the multiphase drag

terms is expected to be at most first-order accurate in time, the numerical solution

is an adequate representation of the exact theoretical solution.

Test Results

The calculated velocities show good agreement with the high-order numerical

solution. Calculations were performed using the backward-Euler and the analytical

integration methods. The simulations were all run over a time interval of one using

constant time-steps. In order to show the temporal convergence of the schemes,

the simulations used three different time-step sizes, such that 10, 20, and 40 time-

steps were used for the simulations. The tests were repeated for three different

porosity levels to see the effect of volume fraction.

The results for each drag coefficient law are plotted in the following figures.

Each figure contains six subplots which are organized in a table with two columns
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and three rows. Each subplot compares the high-order solution (solid line) to the

current algorithm’s solution (colored symbols) for three different time-step sizes.

The left column contains the results using the backward-Euler time integration,

while the right column uses the analytic time integration. Each row plots the

data from a specific porosity level: the top row contains data for a gas mass

fraction of 95%, the middle row 70%, and the bottom row 20%. The drag models

tested are the fixed relaxation constant (Figure 3.80), constant drag coefficient

(Figure 3.81), Stokes (Figure 3.82), Schiller (Figure 3.83), Putnam (Figure 3.84),

Ergun (Figure 3.85), RUC (Figure 3.86), Gidaspow (Figure 3.87), and Akhatov

(Figure 3.88).

As would be expected, the results for a fixed relaxation constant are similar to

those obtained in §3.2.6. The backward-Euler method converges to the theoretical

solution as the time-step size is reduced. The analytic integration method

reproduced the exact solution for all time-refinement levels.

Good agreement is also obtained using a constant drag coefficient. Since

the relaxation time is now time dependent, the analytical solution method no

longer reproduces the high-order solution. However, the analytical method does

converge toward the exact solution with time-step refinement. It is noticed that

the backward-Euler method has very little error for this case.

Notice that the Stokes drag law is a special case of a fixed relaxation constant.

That is because the Stokes drag coefficient is inversely proportional to Reynolds

number and hence velocity. Thus the velocity in the definition of τ cancels out,

resulting in τ being constant. Therefore, the analytic integration reproduces the

exact solution for Stokes drag.

The Schiller and Putnam models are Reynolds-number dependent. Both

integration methods exhibit convergence, but it appears that the analytic

integration over-predicts the change in velocity, while the backward Euler does

a better job. This is especially evident for cases with small relaxation times (faster

velocity response), for example Figure 3.84(f). This is because the solution is highly
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non-linear in velocity and the assumption that τ is constant over the time-step is

less valid. Apparently the implicit formulation of the backward-Euler method

handles the non-linearity better.

The Ergun, RUC, Gidaspow, and Akhatov models depend on the porosity of

the mixture. As with the other models, these solutions appear adequate and seem

to converge to the high-order solution with time refinement.

Test Error Quantification and Convergence

The discretization error for the solution can be quantified using the high-

accuracy numerical solution. Since there is no spatial variation in the solution

to this problem, spatial-discretization error does not contribute to the total error

of the calculation and the time-discretization error should dominate.

The error (EN) is determined for time-step refinement level N using the

methods of §E. The calculated error has been computed for the velocity of both

phases separately. These errors are tabulated in Tables 3.19–3.27. The convergence

rates (rN) are also tabulated. These tables are organized in rows and columns

similar to the plots discussed earlier in this section.

It is expected that the methods should produce at least first-order convergence

in each of the tests. In some cases (for example the analytic integration method

for fixed relaxation constants) the results are essentially exact, and therefore the

errors are dominated by round-off and the solutions do not exhibit convergence. In

other cases the solutions appear to be converging, but the solutions do not appear

to have reached the asymptotic regime and so the convergence is less than first

order. It is expected that running additional cases with smaller time-step would

exhibit first-order behavior. This was verified by running the tests with 1000, 2000,

and 4000 time-step where first-order convergence was observed in all cases.

Test Conclusions

The following conclusions can be drawn from this calculation:

• The numerical results seem to adequately predict the theoretical solutions

for all drag laws. In general, the solutions appear to exhibit first-order



228

convergence behavior as expected.

• For non-linear drag laws, the backward-Euler integration method seems to

produce better results than the analytic integration method.
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(a) beuler, xa = 0.95 (b) analytic, xa = 0.95

(c) beuler, xa = 0.70 (d) analytic, xa = 0.70

(e) beuler, xa = 0.20 (f) analytic, xa = 0.20

Figure 3.80: Multiphase numerical results for the drag-coefficient tests. The drag-
coefficient law used a fixed relaxation constant. The higher velocity curves represent
the solid (phase b) and the lower velocity curves represent the gas (phase a).
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(a) beuler, xa = 0.95 (b) analytic, xa = 0.95

(c) beuler, xa = 0.70 (d) analytic, xa = 0.70

(e) beuler, xa = 0.20 (f) analytic, xa = 0.20

Figure 3.81: Multiphase numerical results for the drag-coefficient tests. The drag-
coefficient law used a constant drag coefficient. The higher velocity curves represent
the solid (phase b) and the lower velocity curves represent the gas (phase a).
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(a) beuler, xa = 0.95 (b) analytic, xa = 0.95

(c) beuler, xa = 0.70 (d) analytic, xa = 0.70

(e) beuler, xa = 0.20 (f) analytic, xa = 0.20

Figure 3.82: Multiphase numerical results for the drag-coefficient tests. The drag-
coefficient law used a Stokes correlation. The higher velocity curves represent the
solid (phase b) and the lower velocity curves represent the gas (phase a).
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(a) beuler, xa = 0.95 (b) analytic, xa = 0.95

(c) beuler, xa = 0.70 (d) analytic, xa = 0.70

(e) beuler, xa = 0.20 (f) analytic, xa = 0.20

Figure 3.83: Multiphase numerical results for the drag-coefficient tests. The drag-
coefficient law used a Schiller correlation. The higher velocity curves represent the
solid (phase b) and the lower velocity curves represent the gas (phase a).
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(a) beuler, xa = 0.95 (b) analytic, xa = 0.95

(c) beuler, xa = 0.70 (d) analytic, xa = 0.70

(e) beuler, xa = 0.20 (f) analytic, xa = 0.20

Figure 3.84: Multiphase numerical results for the drag-coefficient tests. The drag-
coefficient law used a Putnam correlation. The higher velocity curves represent
the solid (phase b) and the lower velocity curves represent the gas (phase a).
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(a) beuler, xa = 0.95 (b) analytic, xa = 0.95

(c) beuler, xa = 0.70 (d) analytic, xa = 0.70

(e) beuler, xa = 0.20 (f) analytic, xa = 0.20

Figure 3.85: Multiphase numerical results for the drag-coefficient tests. The drag-
coefficient law used a Ergun correlation. The higher velocity curves represent the
solid (phase b) and the lower velocity curves represent the gas (phase a).
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(a) beuler, xa = 0.95 (b) analytic, xa = 0.95

(c) beuler, xa = 0.70 (d) analytic, xa = 0.70

(e) beuler, xa = 0.20 (f) analytic, xa = 0.20

Figure 3.86: Multiphase numerical results for the drag-coefficient tests. The drag-
coefficient law used a RUC correlation. The higher velocity curves represent the
solid (phase b) and the lower velocity curves represent the gas (phase a).
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(a) beuler, xa = 0.95 (b) analytic, xa = 0.95

(c) beuler, xa = 0.70 (d) analytic, xa = 0.70

(e) beuler, xa = 0.20 (f) analytic, xa = 0.20

Figure 3.87: Multiphase numerical results for the drag-coefficient tests. The drag-
coefficient law used a Gidaspow correlation. The higher velocity curves represent
the solid (phase b) and the lower velocity curves represent the gas (phase a).
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(a) beuler, xa = 0.95 (b) analytic, xa = 0.95

(c) beuler, xa = 0.70 (d) analytic, xa = 0.70

(e) beuler, xa = 0.20 (f) analytic, xa = 0.20

Figure 3.88: Multiphase numerical results for the drag-coefficient tests. The drag-
coefficient law used a Akhatov correlation. The higher velocity curves represent
the solid (phase b) and the lower velocity curves represent the gas (phase a).
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N EN rN

Phase a Velocity
10 1.52e-03
20 7.83e-04 0.96
40 3.97e-04 0.98

Phase b Velocity
10 2.90e-02
20 1.49e-02 0.96
40 7.55e-03 0.98

(a) beuler, xa = 0.95

N EN rN

Phase a Velocity
10 1.36e-09
20 1.13e-09 0.27
40 1.12e-09 0.0043

Phase b Velocity
10 2.59e-08
20 2.14e-08 0.27
40 2.13e-08 0.0043

(b) analytic, xa = 0.95

N EN rN

Phase a Velocity
10 1.13e-02
20 5.85e-03 0.95
40 2.98e-03 0.97

Phase b Velocity
10 2.63e-02
20 1.36e-02 0.95
40 6.96e-03 0.97

(c) beuler, xa = 0.70

N EN rN

Phase a Velocity
10 1.11e-08
20 9.66e-09 0.2
40 9.54e-09 0.019

Phase b Velocity
10 2.59e-08
20 2.25e-08 0.2
40 2.23e-08 0.019

(d) analytic, xa = 0.70

N EN rN

Phase a Velocity
10 5.00e-02
20 2.79e-02 0.84
40 1.48e-02 0.91

Phase b Velocity
10 1.25e-02
20 6.97e-03 0.84
40 3.70e-03 0.91

(e) beuler, xa = 0.20

N EN rN

Phase a Velocity
10 9.81e-09
20 9.59e-09 0.033
40 1.02e-08 -0.096

Phase b Velocity
10 2.45e-09
20 2.40e-09 0.033
40 2.56e-09 -0.096

(f) analytic, xa = 0.20

Table 3.19: Numerical error and convergence rates for the drag-coefficient tests.
The drag-coefficient law used a fixed relaxation constant.
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N EN rN

Phase a Velocity
10 1.75e-09
20 1.75e-09 -0.0041
40 1.73e-09 0.014

Phase b Velocity
10 3.32e-08
20 3.33e-08 -0.0041
40 3.30e-08 0.014

(a) beuler, xa = 0.95

N EN rN

Phase a Velocity
10 1.26e-03
20 5.93e-04 1.1
40 2.88e-04 1

Phase b Velocity
10 2.40e-02
20 1.13e-02 1.1
40 5.46e-03 1

(b) analytic, xa = 0.95

N EN rN

Phase a Velocity
10 1.47e-08
20 1.43e-08 0.036
40 1.43e-08 0.0021

Phase b Velocity
10 3.42e-08
20 3.34e-08 0.036
40 3.33e-08 0.0021

(c) beuler, xa = 0.70

N EN rN

Phase a Velocity
10 9.50e-03
20 4.39e-03 1.1
40 2.11e-03 1.1

Phase b Velocity
10 2.22e-02
20 1.02e-02 1.1
40 4.93e-03 1.1

(d) analytic, xa = 0.70

N EN rN

Phase a Velocity
10 3.44e-08
20 3.42e-08 0.0094
40 3.45e-08 -0.0097

Phase b Velocity
10 8.61e-09
20 8.56e-09 0.0094
40 8.61e-09 -0.0097

(e) beuler, xa = 0.20

N EN rN

Phase a Velocity
10 5.55e-02
20 2.69e-02 1
40 1.21e-02 1.1

Phase b Velocity
10 1.39e-02
20 6.72e-03 1
40 3.03e-03 1.1

(f) analytic, xa = 0.20

Table 3.20: Numerical error and convergence rates for the drag-coefficient tests.
The drag-coefficient law used a constant drag coefficient.
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N EN rN

Phase a Velocity
10 8.36e-06
20 4.05e-06 1
40 1.99e-06 1

Phase b Velocity
10 1.59e-04
20 7.69e-05 1
40 3.78e-05 1

(a) beuler, xa = 0.95

N EN rN

Phase a Velocity
10 3.33e-11
20 2.87e-11 0.22
40 2.64e-11 0.12

Phase b Velocity
10 6.33e-10
20 5.46e-10 0.21
40 5.02e-10 0.12

(b) analytic, xa = 0.95

N EN rN

Phase a Velocity
10 9.03e-05
20 4.38e-05 1
40 2.16e-05 1

Phase b Velocity
10 2.11e-04
20 1.02e-04 1
40 5.03e-05 1

(c) beuler, xa = 0.70

N EN rN

Phase a Velocity
10 7.33e-10
20 6.33e-10 0.21
40 5.83e-10 0.12

Phase b Velocity
10 1.71e-09
20 1.48e-09 0.21
40 1.36e-09 0.12

(d) analytic, xa = 0.70

N EN rN

Phase a Velocity
10 2.39e-03
20 1.17e-03 1
40 5.80e-04 1

Phase b Velocity
10 5.97e-04
20 2.93e-04 1
40 1.45e-04 1

(e) beuler, xa = 0.20

N EN rN

Phase a Velocity
10 2.18e-09
20 1.79e-09 0.28
40 1.60e-09 0.16

Phase b Velocity
10 5.45e-10
20 4.48e-10 0.28
40 4.00e-10 0.16

(f) analytic, xa = 0.20

Table 3.21: Numerical error and convergence rates for the drag-coefficient tests.
The drag-coefficient law used a Stokes correlation.
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N EN rN

Phase a Velocity
10 3.89e-04
20 1.93e-04 1
40 9.65e-05 1

Phase b Velocity
10 7.38e-03
20 3.68e-03 1
40 1.83e-03 1

(a) beuler, xa = 0.95

N EN rN

Phase a Velocity
10 8.04e-04
20 3.87e-04 1.1
40 1.90e-04 1

Phase b Velocity
10 1.53e-02
20 7.34e-03 1.1
40 3.60e-03 1

(b) analytic, xa = 0.95

N EN rN

Phase a Velocity
10 2.89e-03
20 1.44e-03 1
40 7.19e-04 1

Phase b Velocity
10 6.74e-03
20 3.36e-03 1
40 1.68e-03 1

(c) beuler, xa = 0.70

N EN rN

Phase a Velocity
10 6.06e-03
20 2.89e-03 1.1
40 1.41e-03 1

Phase b Velocity
10 1.41e-02
20 6.75e-03 1.1
40 3.30e-03 1

(d) analytic, xa = 0.70

N EN rN

Phase a Velocity
10 1.46e-02
20 7.74e-03 0.92
40 3.90e-03 0.99

Phase b Velocity
10 3.65e-03
20 1.93e-03 0.92
40 9.76e-04 0.99

(e) beuler, xa = 0.20

N EN rN

Phase a Velocity
10 3.53e-02
20 1.69e-02 1.1
40 7.93e-03 1.1

Phase b Velocity
10 8.82e-03
20 4.22e-03 1.1
40 1.98e-03 1.1

(f) analytic, xa = 0.20

Table 3.22: Numerical error and convergence rates for the drag-coefficient tests.
The drag-coefficient law used a Schiller correlation.
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N EN rN

Phase a Velocity
10 4.69e-05
20 2.82e-05 0.74
40 1.17e-05 1.3

Phase b Velocity
10 8.91e-04
20 5.35e-04 0.74
40 2.23e-04 1.3

(a) beuler, xa = 0.95

N EN rN

Phase a Velocity
10 1.30e-03
20 6.17e-04 1.1
40 2.95e-04 1.1

Phase b Velocity
10 2.47e-02
20 1.17e-02 1.1
40 5.60e-03 1.1

(b) analytic, xa = 0.95

N EN rN

Phase a Velocity
10 4.77e-04
20 2.56e-04 0.9
40 1.51e-04 0.76

Phase b Velocity
10 1.11e-03
20 5.97e-04 0.9
40 3.52e-04 0.76

(c) beuler, xa = 0.70

N EN rN

Phase a Velocity
10 9.82e-03
20 4.49e-03 1.1
40 2.19e-03 1

Phase b Velocity
10 2.29e-02
20 1.05e-02 1.1
40 5.11e-03 1

(d) analytic, xa = 0.70

N EN rN

Phase a Velocity
10 4.65e-03
20 2.32e-03 1
40 1.13e-03 1

Phase b Velocity
10 1.16e-03
20 5.80e-04 1
40 2.82e-04 1

(e) beuler, xa = 0.20

N EN rN

Phase a Velocity
10 5.67e-02
20 2.78e-02 1
40 1.25e-02 1.1

Phase b Velocity
10 1.42e-02
20 6.96e-03 1
40 3.14e-03 1.1

(f) analytic, xa = 0.20

Table 3.23: Numerical error and convergence rates for the drag-coefficient tests.
The drag-coefficient law used a Putnam correlation.
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N EN rN

Phase a Velocity
10 9.65e-06
20 5.10e-06 0.92
40 2.58e-06 0.98

Phase b Velocity
10 1.83e-04
20 9.69e-05 0.92
40 4.90e-05 0.98

(a) beuler, xa = 0.95

N EN rN

Phase a Velocity
10 3.65e-03
20 1.86e-03 0.98
40 8.38e-04 1.1

Phase b Velocity
10 6.94e-02
20 3.53e-02 0.98
40 1.59e-02 1.1

(b) analytic, xa = 0.95

N EN rN

Phase a Velocity
10 5.31e-04
20 2.91e-04 0.87
40 1.49e-04 0.96

Phase b Velocity
10 1.24e-03
20 6.78e-04 0.87
40 3.49e-04 0.96

(c) beuler, xa = 0.70

N EN rN

Phase a Velocity
10 2.26e-02
20 1.32e-02 0.78
40 6.13e-03 1.1

Phase b Velocity
10 5.27e-02
20 3.08e-02 0.78
40 1.43e-02 1.1

(d) analytic, xa = 0.70

N EN rN

Phase a Velocity
10 1.19e-02
20 8.79e-03 0.44
40 5.59e-03 0.65

Phase b Velocity
10 2.97e-03
20 2.20e-03 0.44
40 1.40e-03 0.65

(e) beuler, xa = 0.20

N EN rN

Phase a Velocity
10 1.29e-02
20 2.36e-02 -0.87
40 2.49e-02 -0.082

Phase b Velocity
10 3.22e-03
20 5.89e-03 -0.87
40 6.24e-03 -0.082

(f) analytic, xa = 0.20

Table 3.24: Numerical error and convergence rates for the drag-coefficient tests.
The drag-coefficient law used a Ergun correlation.
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N EN rN

Phase a Velocity
10 2.79e-05
20 1.43e-05 0.96
40 7.20e-06 0.99

Phase b Velocity
10 5.30e-04
20 2.72e-04 0.96
40 1.37e-04 0.99

(a) beuler, xa = 0.95

N EN rN

Phase a Velocity
10 3.13e-03
20 1.46e-03 1.1
40 6.63e-04 1.1

Phase b Velocity
10 5.96e-02
20 2.77e-02 1.1
40 1.26e-02 1.1

(b) analytic, xa = 0.95

N EN rN

Phase a Velocity
10 7.57e-04
20 4.11e-04 0.88
40 2.11e-04 0.96

Phase b Velocity
10 1.77e-03
20 9.60e-04 0.88
40 4.92e-04 0.96

(c) beuler, xa = 0.70

N EN rN

Phase a Velocity
10 2.23e-02
20 1.26e-02 0.82
40 5.79e-03 1.1

Phase b Velocity
10 5.19e-02
20 2.93e-02 0.82
40 1.35e-02 1.1

(d) analytic, xa = 0.70

N EN rN

Phase a Velocity
10 1.15e-02
20 8.90e-03 0.37
40 5.88e-03 0.6

Phase b Velocity
10 2.88e-03
20 2.22e-03 0.37
40 1.47e-03 0.6

(e) beuler, xa = 0.20

N EN rN

Phase a Velocity
10 9.25e-03
20 1.91e-02 -1
40 2.38e-02 -0.31

Phase b Velocity
10 2.31e-03
20 4.78e-03 -1
40 5.94e-03 -0.31

(f) analytic, xa = 0.20

Table 3.25: Numerical error and convergence rates for the drag-coefficient tests.
The drag-coefficient law used a RUC correlation.
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N EN rN

Phase a Velocity
10 8.56e-05
20 4.32e-05 0.99
40 2.19e-05 0.98

Phase b Velocity
10 1.63e-03
20 8.20e-04 0.99
40 4.17e-04 0.98

(a) beuler, xa = 0.95

N EN rN

Phase a Velocity
10 1.39e-03
20 6.48e-04 1.1
40 3.14e-04 1

Phase b Velocity
10 2.64e-02
20 1.23e-02 1.1
40 5.96e-03 1

(b) analytic, xa = 0.95

N EN rN

Phase a Velocity
10 5.31e-04
20 2.91e-04 0.87
40 1.49e-04 0.96

Phase b Velocity
10 1.24e-03
20 6.78e-04 0.87
40 3.49e-04 0.96

(c) beuler, xa = 0.70

N EN rN

Phase a Velocity
10 2.26e-02
20 1.32e-02 0.78
40 6.13e-03 1.1

Phase b Velocity
10 5.27e-02
20 3.08e-02 0.78
40 1.43e-02 1.1

(d) analytic, xa = 0.70

N EN rN

Phase a Velocity
10 1.19e-02
20 8.79e-03 0.44
40 5.59e-03 0.65

Phase b Velocity
10 2.97e-03
20 2.20e-03 0.44
40 1.40e-03 0.65

(e) beuler, xa = 0.20

N EN rN

Phase a Velocity
10 1.29e-02
20 2.36e-02 -0.87
40 2.49e-02 -0.082

Phase b Velocity
10 3.22e-03
20 5.89e-03 -0.87
40 6.24e-03 -0.082

(f) analytic, xa = 0.20

Table 3.26: Numerical error and convergence rates for the drag-coefficient tests.
The drag-coefficient law used a Gidaspow correlation.
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N EN rN

Phase a Velocity
10 1.83e-04
20 9.10e-05 1
40 4.53e-05 1

Phase b Velocity
10 3.47e-03
20 1.73e-03 1
40 8.61e-04 1

(a) beuler, xa = 0.95

N EN rN

Phase a Velocity
10 1.37e-03
20 6.41e-04 1.1
40 3.10e-04 1

Phase b Velocity
10 2.60e-02
20 1.22e-02 1.1
40 5.89e-03 1

(b) analytic, xa = 0.95

N EN rN

Phase a Velocity
10 7.13e-04
20 3.92e-04 0.86
40 2.01e-04 0.96

Phase b Velocity
10 1.66e-03
20 9.15e-04 0.86
40 4.69e-04 0.96

(c) beuler, xa = 0.70

N EN rN

Phase a Velocity
10 2.23e-02
20 1.27e-02 0.82
40 5.84e-03 1.1

Phase b Velocity
10 5.20e-02
20 2.95e-02 0.82
40 1.36e-02 1.1

(d) analytic, xa = 0.70

N EN rN

Phase a Velocity
10 4.95e-03
20 5.96e-03 -0.27
40 5.65e-03 0.078

Phase b Velocity
10 1.24e-03
20 1.49e-03 -0.27
40 1.41e-03 0.078

(e) beuler, xa = 0.20

N EN rN

Phase a Velocity
10 7.58e-05
20 1.12e-03 -3.9
40 4.31e-03 -1.9

Phase b Velocity
10 1.89e-05
20 2.81e-04 -3.9
40 1.08e-03 -1.9

(f) analytic, xa = 0.20

Table 3.27: Numerical error and convergence rates for the drag-coefficient tests.
The drag-coefficient law used a Akhatov correlation.
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3.2.8 Multiphase Drag with Conduction

Test Description

This tests the multiphase drag and heat-transfer models. It is a single-element

problem with a gas and solid phase. The only interaction between the phases

occurs due to temperature and velocity relaxation.

Test Setup

This problem consists of a single gas phase (a) and a single solid phase (b).

The geometry is a single element with outflow boundary conditions enforced on all

external faces. Thus, there are no flow gradients possible and the hydrodynamic

equations are trivially satisfied. Initially, the phases are at different velocities,

resulting in momentum exchange through drag. The gas phase is initially at

velocity Ua = 1 and the solid phase is initially at velocity U b = 2. There is

also a temperature difference between the phases, resulting in conductive heat

transfer. The gas phase is initially at temperature T a = 2 and the solid phase is

initially at temperature T b = 3.

To complicate the problem further, temperature-dependent material properties

are used. The following relations are used for the specific heat, thermal

conductivity, and viscosity:

Cva = 2.5 + 2.5Ta

Cvb = 0.4 + 0.4Tb

ka = 0.0001 + 0.0001Ta

µa = 0.0001T 2
a

The problem is run with the Ranz-Marshall relation for the Nusselt number

(see §C) and the Ergun equation for the drag coefficient (see §B). Therefore,

both the drag and heat transfer are functions of Reynolds number. The tests are

repeated for three different porosity levels with gas mass fractions of 95%, 70%,

and 20%.



248

Test Theory

The analytical expression for the velocity and temperature evolution of a

multiphase mixture from drag and heat transfer between the phases is discussed

in §2.1.14.2 and §2.1.14.3. For the two-phase problem of interest here, the governing

equations reduce to

dua

dt
= − xb

xaτv

(ua − ub)

dub

dt
=

1

τv

(ua − ub)

dTa

dt
= − xbCvb

xaCvaτt

(Ta − Tb) +
ua

Cva

dua

dt
+

xbub

xaCva

dub

dt
dTb

dt
=

1

τt

(Ta − Tb)

where the mass fractions, xa and xb, are constants in the current problem. The

extra terms on the third equation account for kinetic energy transfer due to drag.

The relaxation response times are given by

τv =
4

3

ρb

ρa

db

CD (ua − ub)

for the velocity and

τt =
1

12

ρbCvbd
2
b

ka

2

Nu

for the temperature.

As there is not an analytic solution for the above coupled system, an accurate

numerical solution of the above system of ODE’s is used for comparison. The

numerical solution is calculated using the high-order Adams method in SciPy [91].

Since the methods used to integrate the multiphase drag and heat-transfer terms

are expected to be at most first-order accurate in time, the numerical solution is

an adequate representation of the exact theoretical solution.

Test Results

The calculated velocity and temperature show good agreement with the high-

order numerical solution. Calculations were performed using the backward-Euler
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and the analytical integration methods. The simulations were all run over a

time interval of one using constant time-steps. In order to show the temporal

convergence of the schemes, the simulations used three different time-step sizes,

such that 10, 20, and 40 time-steps were used for the simulations. The tests were

repeated for three different porosity levels to see the effect of volume fraction.

The results are plotted in the following figures. Each figure contains six subplots

which are organized in a table with two columns and three rows. Each subplot

compares the high-order solution (solid line) to the current algorithm’s solution

(colored symbols) for three different time-step sizes. The left column contains the

results using the backward-Euler time integration, while the right column uses the

analytic time integration. Each row plots the data from a specific porosity level:

the top row contains data for a gas mass fraction of 95%, the middle row 70%, and

the bottom row 20%. The velocity results are in Figure 3.89 and the temperature

results are in Figure 3.90. The model seems to accurately reproduce the high-order

solution in all the plots.

Test Error Quantification and Convergence

The discretization error for the solution can be quantified using the high-

accuracy numerical solution. Since there is no spatial variation in the solution

to this problem, spatial-discretization error does not contribute to the total error

of the calculation and the time-discretization error should dominate.

The error (EN) is determined for time-step refinement level N using the

methods of §E. The calculated error has been computed for the temperature and

velocity of both phases separately. These errors are tabulated in Tables 3.28–3.29.

The convergence rates (rN) are also tabulated. These tables are organized in rows

and columns similar to the plots discussed earlier in this section.

It is expected that the methods should produce at least first-order convergence

in each of the tests. First-order convergence is seen in both the analytic and

backward-Euler integration methods. In some cases the solutions do not appear

to have reached the asymptotic regime and so the convergence is slightly less than
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first order. It is expected that running additional cases with smaller time-step

would exhibit first-order behavior. This was verified by running the tests with

1000, 2000, and 4000 time-step where first-order convergence was observed in all

cases.

Test Conclusions

The following conclusions can be drawn from this calculation:

• The numerical results seem to adequately predict the theoretical solutions

for coupled drag-conduction problems. In general, the solutions appear to

exhibit first-order convergence behavior as expected.

• The behavior of temperature-dependent material properties appears to be

handled correctly.
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(a) beuler, xa = 0.95 (b) analytic, xa = 0.95

(c) beuler, xa = 0.70 (d) analytic, xa = 0.70

(e) beuler, xa = 0.20 (f) analytic, xa = 0.20

Figure 3.89: Multiphase numerical results for the coupled drag/conduction tests:
velocity results. The higher velocity curves represent the solid (phase b) and the
lower velocity curves represent the gas (phase a).
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(a) beuler, xa = 0.95 (b) analytic, xa = 0.95

(c) beuler, xa = 0.70 (d) analytic, xa = 0.70

(e) beuler, xa = 0.20 (f) analytic, xa = 0.20

Figure 3.90: Multiphase numerical results for the coupled drag/conduction tests:
temperature results. The higher temperature curves represent the solid (phase b)
and the lower temperature curves represent the gas (phase a).
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N EN rN

Phase a Velocity
10 1.43e-05
20 7.12e-06 1
40 3.55e-06 1

Phase b Velocity
10 2.72e-04
20 1.35e-04 1
40 6.74e-05 1

(a) beuler, xa = 0.95

N EN rN

Phase a Velocity
10 1.37e-03
20 6.38e-04 1.1
40 3.09e-04 1

Phase b Velocity
10 2.60e-02
20 1.21e-02 1.1
40 5.87e-03 1

(b) analytic, xa = 0.95

N EN rN

Phase a Velocity
10 9.34e-04
20 4.69e-04 0.99
40 2.35e-04 1

Phase b Velocity
10 2.18e-03
20 1.09e-03 0.99
40 5.47e-04 1

(c) beuler, xa = 0.70

N EN rN

Phase a Velocity
10 1.02e-02
20 4.68e-03 1.1
40 2.24e-03 1.1

Phase b Velocity
10 2.37e-02
20 1.09e-02 1.1
40 5.23e-03 1.1

(d) analytic, xa = 0.70

N EN rN

Phase a Velocity
10 3.03e-02
20 1.87e-02 0.7
40 1.02e-02 0.87

Phase b Velocity
10 7.59e-03
20 4.67e-03 0.7
40 2.55e-03 0.87

(e) beuler, xa = 0.20

N EN rN

Phase a Velocity
10 2.75e-02
20 2.05e-02 0.42
40 1.03e-02 0.99

Phase b Velocity
10 6.88e-03
20 5.13e-03 0.42
40 2.58e-03 0.99

(f) analytic, xa = 0.20

Table 3.28: Numerical error and convergence rates for the coupled drag/conduction
tests: velocity results.
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N EN rN

Phase a Temperature
10 1.75e-04
20 8.93e-05 0.97
40 4.52e-05 0.98

Phase b Temperature
10 1.69e-02
20 8.61e-03 0.97
40 4.35e-03 0.98

(a) beuler, xa = 0.95

N EN rN

Phase a Temperature
10 1.40e-04
20 6.62e-05 1.1
40 3.22e-05 1

Phase b Temperature
10 1.70e-02
20 8.15e-03 1.1
40 3.99e-03 1

(b) analytic, xa = 0.95

N EN rN

Phase a Temperature
10 1.48e-03
20 7.67e-04 0.95
40 3.91e-04 0.97

Phase b Temperature
10 1.73e-02
20 8.94e-03 0.95
40 4.55e-03 0.97

(c) beuler, xa = 0.70

N EN rN

Phase a Temperature
10 1.59e-03
20 7.57e-04 1.1
40 3.69e-04 1

Phase b Temperature
10 2.15e-02
20 1.03e-02 1.1
40 5.02e-03 1

(d) analytic, xa = 0.70

N EN rN

Phase a Temperature
10 4.60e-03
20 2.83e-03 0.7
40 1.59e-03 0.83

Phase b Temperature
10 5.06e-03
20 2.97e-03 0.77
40 1.63e-03 0.86

(e) beuler, xa = 0.20

N EN rN

Phase a Temperature
10 2.99e-02
20 1.53e-02 0.97
40 7.53e-03 1

Phase b Temperature
10 3.76e-02
20 1.94e-02 0.96
40 9.57e-03 1

(f) analytic, xa = 0.20

Table 3.29: Numerical error and convergence rates for the coupled drag/conduction
tests: temperature results.



255

3.2.9 Multiphase Particle Cloud

Test Description

This tests the multiphase drag model. It consists of a cloud of solid particles

traveling through a gas. The particle cloud is given an initial velocity. As the cloud

passes through the stationary gas it experiences a drag force which slows it down.

The solid particles account for a very small volume fraction of the overall mixture.

Therefore, the flow is fully within the dilute regime and the particles have very

little impact on the gas and do not interact with each other. Therefore, ideally

each particle within the cloud should behave like an isolated particle. Although the

multiphase algorithm does not track each of these particles individually, the bulk

motion of the particle cloud should follow the trajectory of an isolated particle.

Test Setup

This problem uses a one-dimensional geometry split into computational cells in

the x direction. The length of the domain is one. Initially the domain is divided

into three sections: on the left and right is pure gas, in the middle is a section

containing a solid-gas mixture representing the particle cloud. The mixture region

is initialized with a solid mass fraction of 0.1. This results in a very small volume

fraction since the mass density of the solid is 1000.25 while the density of the gas

is only 2.5. The particle cloud is initially centered at x = 0.25 with a width of 0.1.

The particles are given a diameter of 0.0001, their initial velocity is 0.1, and the

drag coefficient is assumed to be constant at 1.0,

Test Theory

The theoretical description of a particle in an embedded fluid is discussed in

Crowe et al. [4]. The equation of motion for an isolated particle comes from

Newton’s second law. Applying the standard definition of the drag coefficient

gives

∂2x

∂t2
=

∂v

∂t
= −FD

mp

= −3ρfCD

4ρpd
v2 = −cv2
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where c is a constant given by

c =
3ρfCD

4ρpd

and x and v are the particle position and velocity, respectively. This is a second-

order ordinary differential equation. Given the boundary conditions

v(t = 0) = v0

x(t = 0) = x0

this equation can be integrated to obtain expressions for the particle velocity and

position

v(t) =
1

ct + 1
v0

x(t) = x0 +
1

c

[

ln

∣

∣

∣

∣

ct +
1

v0

∣

∣

∣

∣

− ln

∣

∣

∣

∣

1

v0

∣

∣

∣

∣

]

The above analytical equations describe the motion of an isolated particle

within a carrier gas. Thus, these equations can be applied to each individual

particle within a particle cloud. This assumes that the particles within the cloud

are spatially separated from each other and do not interact. Therefore, for dilute

flow, the above equations can be applied to the velocity and position of the center

of mass of a particle cloud.

In order to compare to the theoretical solution, the position and velocity of

the center of mass of the particle cloud must be computed at each time-step. The

position xcom and velocity vcom of the center of mass is computed each time-step

using:

xcom =
∑ mixi

mtot

vcom =
∑ mivi

mtot

The above summations are taken over each cell in the problem, where mi is the

particle mass in zone i, xi is the centroid of zone i, vi is the particle velocity in

zone i, and mtot is the total particle mass in the problem:

mtot =
∑

mi
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Test Results

The results of the simulations agree well with the theoretical solutions.

Simulations on four grids were performed using 100, 200, 400, and 800 grid cells.

Both the first-order and second-order schemes were used in these calculations. The

calculations used the analytical integration model for the drag calculations.

The position of the center of mass of the particle cloud is plotted in Figure 3.91

for the first-order method. The velocity of the cloud is plotted in Figure 3.92.

Both variables track the general trend of the isolated particle theory. At the end

of the simulation the error in the predicted position is about 0.8% and the error

in the velocity is about 8%. This is the case for all grids; mesh resolution does

not contribute significantly to the error metrics used on this problem. The second-

order scheme does not change the results significantly either, as seen in Figure 3.94

and Figure 3.95.

Some assumptions in the theoretical description of this problem are that all of

the particles follow the path of an isolated particle and the particles do not influence

the surrounding gas. However, this is not exactly what happens in simulations

which treat the particles as a continuum. In the current method, the particles

behave like a fluid rather than discrete particles. This has a couple consequences.

First, numerical dissipation causes the particle cloud to diffuse. Thus, the

particles will spread out over a larger volume as they advect through the mesh.

Plotting the particle volume fraction (Figure 3.93) shows this effect while exhibiting

that the numerical diffusion decreases as the mesh is refined. Turning the predictor

on reduced this diffusion further, but it still exists as seen in Figure 3.96.

Also, because of the initial gradients in volume fraction, the non-conservative

hydrodynamic terms will contribute to the solution. For dilute flow this is expected

to be small, but it will result in some error. It is expected that most of the error

in this problem comes from these effects. This is why spatial resolution does not

improve the solution significantly.
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Test Conclusions

The following conclusions can be drawn from this calculation:

• The multiphase model reasonably reproduces position and velocity of isolated

particle motion.

• Increasing mesh resolution and turning the predictor on does not improve the

center-of-mass calculations, but they do reduce the diffusion of the cloud.

• It is expected that most of the errors associated with the current simulations

can be attributed to approximations required to relate the problem setup to

the theory.
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Figure 3.91: Multiphase numerical results for the position of the center of mass of
a particle cloud. The tests used an Eulerian grid with the predictor off.
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Figure 3.92: Multiphase numerical results for the velocity of the center of mass of
a particle cloud. The tests used an Eulerian grid with the predictor off.
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Figure 3.93: Multiphase numerical results for the volume fraction of a particle
cloud. The tests used an Eulerian grid with the predictor off.
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Figure 3.94: Multiphase numerical results for the position of the center of mass of
a particle cloud. The tests used an Eulerian grid with the predictor on.
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Figure 3.95: Multiphase numerical results for the velocity of the center of mass of
a particle cloud. The tests used an Eulerian grid with the predictor on.
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Figure 3.96: Multiphase numerical results for the volume fraction of a particle
cloud. The tests used an Eulerian grid with the predictor on.
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3.2.10 Sommerfeld Dusty Shock Tube

Test Description

A planar shock passing through a dusty gas is used to investigate shock

attenuation. The problem is initialized with a weak shock in a region of clean

air. After propagating a short distance, the shock enters into a very dilute gas-

particle mixture. The current results are compared to the experimental data of

Sommerfeld [92], who also provided much theoretical analysis of the problem. The

problem was previously studied computationally by Sivier et al. [9, 12].

As the shock penetrates the particulate region, a shock is reflected back into

the clean air and the original shock is transmitted into the mixture. The particle

interactions cause a reduction in the velocity of the transmitted shock. This

deceleration does not occur instantaneously due to the inertia of the particles.

Thus, a transition region develops where the shock velocity is slowed from it’s

initial speed to the equilibrium value. The experimental data reveal that the

resulting shock is strongly influenced by the particle loading and the specific heats

of the particles and gas. Accurately modeling the particle drag and heat transfer

between phases is crucial to robustly predicting the flow.

Test Setup

This test is setup as a one-dimensional shock tube. Initially there are three

sections, labeled A, B, and C in Figure 3.97. On the left (region A) is high pressure

air. Next to it in the middle (region B) is low pressure ambient air. Finally, on the

right (region C ) is a mixture region of air and particles at ambient air pressure.

The ambient conditions for this problem are defined as p = 1×10−6 Mbar and

T = 300 K. Given the ambient conditions in front of the shock, the state of the

air behind the shock (region A) can be computed using the ideal-gas normal-shock

relations [89]. The shock Mach number is 1.49 for the current problem.

The air is modeled using the ideal-gas law with the following properties:

Adiabatic constant

γ = 1.4
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Specific heat

Cv = 717.5×10−8 Mbar.cm3

g.K

Thermal conductivity

k = 0.0241×10−13 Mbar.cm2

µs.K

Coefficient of viscosity

µ = 1.7894×10−10 g

cm.µs

The particulate phase consists of spherical glass particles distributed

homogeneously throughout the cloud. The particles have a uniform size, with

a diameter of 27×10−4 cm and a density of 2.5 g
cm3 . The compressibility of the

particles is not expected to have a large impact on the solution, so it is assumed

that a simplified equation of state is satisfactory for this problem. Therefore, the

particles are represented by the stiffened-gas equation of state (see §A.1.2). The

properties of the particles are given by the following constants:

Material constants

γ = 4.4, P∞ = 0.006 Mbar

Specific heat

Cv = 766.0×10−8 Mbar.cm3

g.K

Cold energy

εcold = 0.000808
Mbar.cm3

g

The particle loading, defined as the mass of the particles divided by the mass of

the gas, has a value of 0.63.

Relaxation terms play a very important part in this simulation. Particle drag

is given by a drag coefficient which is a function of Reynolds number (Re) as given

by the correlation of Schiller and Naumann (see §B)

CD =
24

Re

(

1 + 0.15Re0.687
)
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which is valid for Re < 800. Calculations in Sommerfeld [92] used an unsteady

drag model which was tuned specifically to the current problem.

Heat transfer between the phases is accomplished using the Ranz-Marshall

correlation for the Nusselt number (see §C)

Nu = 2 + 0.6Re1/2Pr1/3

which is a good fit for Reynolds numbers below 50, 000. Numerical experiments

found that turning off thermal conduction between the phases cuts the shock

attenuation in half, while using a constant Nusselt number of 2 over-predicts

the attenuation slightly. Thus, heat transfer plays a very important role in this

problem.

Due to the very dilute nature of the flow, pressure relaxation is accomplished

by slaving the solid pressure to the gas pressure, thus the solid does not influence

the gas pressure.

The problem is one dimensional by design. It is modeled using a three-

dimensional mesh with a single zone in the y and z directions and symmetry

boundary conditions on the sides, resulting in a pseudo-1D flow in the x direction.

The number of zones in the x direction are varied to look at mesh convergence.

Outflow boundary conditions are given at the left and right boundaries.

Test Theory

No analytic solution is available for this test. Therefore, the results are compared

to the experimental data in Figure 15 of Sommerfeld [92].

Test Results

The results are plotted in Figures 3.98–3.101. The experimental data is

represented by solid black symbols and the numerical results are given by colored

lines. The different colors represent different levels of grid refinement. The grids

used in the current results contained 200, 400, and 800 total grid cells. Results

using an Eulerian grid are shown in Figure 3.98 with the predictor off, and in

Figure 3.99 with the predictor turned on. The results on an ALE mesh are provided

in Figure 3.100 and Figure 3.101.
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The computations seem to robustly capture the equilibrium shock speed seen

in the experiments. However, the computations show a much faster deceleration

of the shock than the experiments.

Comparing the predictions using the predictor compared to the answers with

no predictor show that the predictor accelerates mesh convergence much faster,

as expected. The values obtained with the predictor on show very good results

even at very coarse grids, thus indicating that discretization error is very small

in this problem. Thus, any improvement in the solution will need to come from

improvement in the physics models.

Comparing the fixed grid verses the moving grid results show that the ALE

answers seem to have less spread between different resolutions. This implies that

the ALE method is moving mesh into the important regions resulting in faster

mesh convergence.

Test Conclusions

The following conclusions can be drawn from this calculation:

• The ALE technique allows for improved mesh resolution in the shock region,

resulting in improved results compared to an Eulerian calculation using the

same number of cells.

• Heat transfer plays a very important role in this problem. Turning off thermal

conduction between the phases reduces the shock attenuation by a factor of

2. Therefore, it is assumed that improved results could probably be attained

by using a more accurate model for the Nusselt number.

• The drag model also plays an important role in the accuracy of the

predictions. Sommerfeld [92] used an unsteady drag model which was tuned

specifically to the current problem. It is not clear how well this model

would perform when applied to another problem. It is also not clear that an

unsteady correction is required for this problem, as the acceleration of the
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particles occurs primarily within a very small region around the shock and

the fluid acceleration is accounted for by other hydrodynamic terms.



270

Figure 3.97: Sommerfeld Shock Tube Setup. (Not shown to scale)
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Figure 3.98: Multiphase numerical results for the Sommerfeld shock tube. The
shock Mach number is plotted. The tests used an Eulerian grid with the predictor
off.
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Figure 3.99: Multiphase numerical results for the Sommerfeld shock tube. The
shock Mach number is plotted. The tests used an Eulerian grid with the predictor
on.
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Figure 3.100: Multiphase numerical results for the Sommerfeld shock tube. The
shock Mach number is plotted. The tests used an ALE grid with the predictor off.
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Figure 3.101: Multiphase numerical results for the Sommerfeld shock tube. The
shock Mach number is plotted. The tests used an ALE grid with the predictor on.
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3.3 Multiphase-Lagrange Coupling

The final result section describes tests intended to evaluate the interaction between

a multiphase fluid and a structural material. This is the ultimate goal of the current

effort.

The tests begin with a simple one-dimensional problem involving a multi-phase

fluid interacting with a rigid piston. This is followed by a multi-material Riemann

problem. The model predictions are next compared to an experimental study of a

shock wave impacting a flexible steel plate. Finally, the model is used to investigate

the effect of dust particles on a blast wave impacting a structure.
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3.3.1 Multiphase Piston

Test Description

This tests the interaction of the multiphase model with a solid. It consists of a

multiphase gas on the left, a solid piston in the center, and an ideal gas (staggered-

grid hydro) on the right. Initially, the multiphase gas on the left is at a higher

pressure than the gas on the right, resulting in a pressure force pushing the piston

to the right. As the piston moves, the volume on the left increases causing a

decrease in the pressure on the left. At the same time, the volume on the right

decreases causing an increase in the pressure on the right. Eventually, the pressure

on the right becomes greater than the pressure on the left causing the piston to

decelerate and then get pushed to the left. Thus, the pressure force causes the

piston to travel back and forth in a cyclic fashion.

Test Setup

The initial geometry for this problem is shown in Figure 3.102. The problem

consists of a steel piston separating two gases. The piston is modeled using

properties similar to steel, resulting in an essentially rigid material. The gas on

the right uses the standard staggered-grid hydrodynamics model. The gas on the

left is calculated using the multiphase model and consists of a multiphase mixture

of two identical gases. All gases in the problem are modeled as ideal gases with

γ = 1.4.

This problem uses a one-dimensional geometry. It is modeled using a two-

dimensional mesh with a single zone in the y direction and symmetry boundary

conditions on the sides, resulting in a pseudo-1D flow in the x direction. Symmetry

boundary conditions are also given at the boundaries x = −2 and x = 2. The mesh

has a total of 21 zones: 10 zones in the left gas, 10 zones in the right gas, and a

single zone in the piston material.

The problem has a domain length of 4 with the origin (x = 0) at the center.

The piston’s length is 1 with a mass also of 1. Initially, the gas on the left has a

length of 1 and the right gas has a length of 2. Thus, the initial volume of the gas
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on the right is twice the volume of the gas on the left. The mass in both the left

and right gas regions are the same, equal to 0.0015. In the multiphase gas, the

mass is evenly split between both phases. Therefore, the pressure in the left gas is

initially twice that of the right gas.

Test Theory

The motion of the piston is governed by Newton’s second law:

msol
d2x

dt2
= A (pL − pR)

where x is the center of mass of the piston and msol is the mass of the piston. The

pressure in the left and right gas are given by pL and pR respectively. The area,

A, is the frontal area of the piston, equal to 1 here. The left and right pressure

can be related to the gas volume by assuming it follows the isentropic gas law

pV γ = p∗V
γ
∗ = const

where p∗ and V∗ are the pressure and volume at equilibrium. This equation

only works if the pressure on each side of the piston is in equilibrium. This is

a valid assumption if the piston motion is very slow compared to the pressure

wave propagation in the gases.

The volume of the left and right gas can easily be obtained from the piston

position. Thus, the final governing equation is

d2x

dt2
=

p∗A

msol

[(

V∗

V∗ + Ax

)γ

−
(

V∗

V∗ − Ax

)γ]

In the results that follow, this second-order ODE is solved numerically using a

forth-order Runge-Kutta solver [93], to obtain the theoretical solution.

Test Results

The results of the simulations agree well with the theoretical solutions. The

first-order scheme was used in these calculations, i.e. the predictor was not turned

on.

The position of the center of mass of the piston is plotted in Figure 3.103. The

velocity of the piston is plotted in Figure 3.104. Both variables are captured by
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the calculations very well. The quality of the results indicate that the pressure on

each side of the piston is very close to the equilibrium value given by the isentropic

gas law. Mesh refinement is not expected to improve the solution to this problem.

Test Conclusions

The following conclusions can be drawn from this calculation:

• The above results show that the force due to the pressure in the multiphase

mixture is correctly accelerating the solid piston.

• The theoretical solution of the problem assumes that the multiphase mixture

behaves like a gas. Therefore, the current model used for fluid-structure

coupling is appropriate for this problem. This is confirmed by these results.
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Figure 3.102: Initial geometry for the multiphase piston test. Region 1 is shown in
red and contains a multiphase mixture. Region 2 is shown in green and contains
a solid material. Region 3 is shown in blue and contains a single-phase gas.
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Figure 3.103: Numerical results for the position of the center of mass of a rigid
piston.
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Figure 3.104: Numerical results for the velocity of the center of mass of a rigid
piston.
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3.3.2 Multiphase-Lagrangian Water-Air Shock Tube

Test Description

A classical one-dimensional shock tube with multiple materials is investigated

here. The test consists of high-pressure liquid water on the left and low-pressure

air on the right. This has become a standard test for multi-fluid algorithms. It

has been modeled using interface tracking methods as well as diffuse boundary

methods; including single-phase mixture models [86] and multiphase models [20,

22]. In the current test the water is modeled using the Lagrangian structural model

and the air is modeled using the multiphase algorithm.

Test Setup

This test is a one-dimensional simulation of a shock tube with liquid water on

the left and air on the right. The problem is similar to the test in §3.2.2, except

here the multiphase algorithm is used to model the air on the right, while the

Lagrangian structural model is used for the water on the left. In the previous test

the multiphase algorithm was used for both materials. Both fluids are represented

by the stiffened-gas equation of state (see §A.1.2). The water is represented by

γ = 4.4 and P∞ = 6×108 and the air is given by γ = 1.4 and P∞ = 0. The spatial

domain of the problem is x ∈ [0, 1], where the left and right states are separated by

a discontinuity at position x = 0.7. The solutions are compared at the simulation

end time t = 229×10−6. The initial conditions are tabulated in Table 3.30.

The problem is one dimensional by definition. It is modeled using a three-

dimensional mesh with a single zone in the y and z directions and symmetry

boundary conditions on the sides, resulting in a pseudo-1D flow in the x direction.

The number of zones in the x direction are varied to look at mesh convergence.

Outflow boundary conditions are given at the boundaries x = 0 and x = 1.

This test problem is run using a Lagrangian mesh in the water and an ALE

mesh in the air. In the air, the mesh motion is determined by the motion of the

Lagrangian interface between the materials. As the interface moves to the right

and the air is compressed, the air mesh translates to the right keeping a uniform
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spacing within the air.

Test Theory

An algorithm for an exact Riemann solver for the stiffened-gas equation of state

is presented in [87]. This is extended for multiple materials to obtain the exact

solution.

Test Results

The results of the simulations are plotted in Figures 3.105–3.106. The numerical

results for the various grid resolutions are given by the colored symbols, while

the exact solution is represented by the solid black line. The computations were

performed using both the first-order method (predictor off) and the second-order

scheme (predictor on) for the multiphase solver. The structural solver used for the

water material was always second-order accurate.

This test consists of a rightward traveling shock, a rarefaction wave on the left,

and in the middle there is a contact discontinuity traveling to the right following

the shock. This is a very sever problem with large pressure and density differences

in the materials. The results exhibit the expected numerical diffusion present in

shocks and rarefaction waves. The multiphase model appears to capture the shock

very well, while the Lagrangian structural model seems to produce overshoots in

the density and velocity at the tail of the rarefaction. These overshoots are similar

to those seen around rarefactions using the second-order multiphase algorithm

in earlier tests. Overall, the propagation speed of the various waves appears to

be correct as the average position of the waves is close to the theoretical position.

Unlike the pure multiphase version of this problem, the material contact is resolved

explicitly in the current approach. Thus, there is no numerical diffusion in the

contact discontinuity. The results do exhibit an undershoot in the air density at

the material interface. It appears that the solutions are converging to the exact

solution as the grid is refined.

Test Conclusions

The following conclusions can be drawn from this calculation:
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• The fluid-structure interaction model in the current algorithm adequately

computes the quantities in the multi-material problem.

• It appears that the coupling algorithms used in the current approach are

appropriate for modeling the interface between two single-phase fluids.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.105: Numerical results for the multiphase-Lagrangian water-air shock-
tube test. The tests were run with the predictor off.
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(a) density (b) velocity

(c) pressure (d) energy

Figure 3.106: Numerical results for the multiphase-Lagrangian water-air shock-
tube test. The tests were run with the predictor on.
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Variable Value

x0 0.7
t0 229×10−6

ρL 1000
uL 0.0
pL 1×109

ρR 50
uR 0.0
pR 1×105

Table 3.30: Initial conditions for the multiphase-Lagrangian water-air shock-tube
problem.
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3.3.3 Lagrange Cantilever Plate Bending

Test Description

This is a Lagrangian test of the bending of a cantilever plate. This test does

not use the multiphase model, it is purely Lagrange hydro. The test is designed to

show that the Lagrange hydro can accurately predict the maximum displacement

of a plate subjected to a pressure loading (See Figure 3.107). It also computes

the fundamental frequency of the plate. This is a prerequisite test for the fluid-

structure interaction problem discussed in §3.3.4.

Test Setup

This is a 2D plane-strain problem. The grid is rectangular with a width of 0.1

cm and a height of 5.0 cm. The nodes on the bottom (y=0) are constrained.

This problem is run in two stages. The initial stage tests to see if the correct

displacement of the top of the plate is calculated. Here the left side has a pressure

boundary condition of 2×10−6 Mbar and the other free surfaces have a pressure

boundary condition of 1×10−6 Mbar.

Once equilibrium is reached, stage two begins. Here the damping is turned

off and the pressure on the left side of the plate is reduced to 1×10−6 Mbar (the

same as the other sides). The plate will then begin to oscillate at its fundamental

frequency.

The panel is made of an elastic steel. The elastic properties of the steel are

given by Giordano et al. [37]. Not given any additional material property data, it

was assumed that the Grüneisen equation of state (see §A.1.4) for steel would be

adequate. Therefore, the following properties were used:

Reference Density

ρ = 7.6
g

cm3

Young’s Modulus

E = 2.2 Mbar
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Sound Speed

c = 0.457
cm

µs

Bulk Modulus

K = ρc2 = 1.587 Mbar

Shear Modulus

G =
3KE

9K − E
= 0.867 Mbar

Poisson Ratio

ν =
E − 2G

2G
= 0.269

Test Theory

The deflection of an elastic beam with the applied loads shown in Figure 3.107

has an analytical solution. Giordano et al. [37] provides the closed-form solution

for the maximum displacement of the end of a beam as well as the fundamental

frequency of the beam.

Max Displacement

δmax =
3∆pL4

2El3

Circular Frequency

ω =

√

El2

ρL4

Period

T =
2π

ω

The above equations are valid for a long beam which uses the plane-stress

approximation. The current problem is the deflection of a long plate. The

plate has an infinite depth in the out-of-plane direction. Therefore a plane-

strain approximation is more appropriate. The plane-strain problem has the

same mathematical form as the plane-stress problem. Therefore, the plane-strain
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solution can be obtained from the plane-stress solution by modifying the elastic

constants, such that the Young’s modulus and Poisson ratio are redefined as

Ē =
E

1 − ν2
= 2.37 Mbar

ν̄ =
ν

1 − ν
= 0.368

These properties are plugged into the above equations with the following values

from the problem setup: ∆p = 1×10−6 Mbar, L = 5.0 cm, and l = 0.1 cm. This

yields the result

Max Displacement

δmax =
3∆pL4

2Ēl3
=

(3)(1×10−6)(5.0)4

(2)(2.37)(0.1)3
= 0.395 cm

Circular Frequency

ω =

√

Ēl2

ρL4
=

√

(2.37)(0.1)2

(7.6)(5.0)4
= 2.23×10−3 rad

µs

Period

T =
2π

ω
= 2.81×103 µs

These results have been tabulated as Theory in Table 3.31.

Test Results

The displacement of the plate is plotted in Figure 3.108. The plotted value is

the time-history of the x-coordinate of a tracer particle placed at the tip of the

plate along the centerline. Three grid-refinement levels were computed. It can be

seen that although the solution is not fully grid-converged, the solutions do appear

to be converging as the grid is refined.

The first stage of the calculation focused on the maximum displacement of

the plate for the given loading. Mass-proportional damping was used in order to

reach the equilibrium position more quickly. This stage of the run lasted 10,000

µs, at which point the displacement for each grid resolution was read off the plot
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and tabulated in Table 3.31. The error for the finest grid level was about 1.0%

compared to the theoretical value.

The next stage of the calculation (10,000 µs to 30,000 µs) focused on the plate

oscillation at the fundamental frequency. For this stage, the pressure load was

removed and the artificial damping was turned off. The plate displacement went

through 6 oscillations in this time. The period of these 6 oscillations were averaged

and tabulated for each grid resolution in Table 3.31. The error for the finest grid

level was about 0.7% compared to the theoretical value.

Test Conclusions

The following conclusions can be drawn from this calculation:

• The code accurately computed the maximum displacement of the plate

deflection.

• The code accurately computed the fundamental frequency of the plate.

• Additional grid refinement could not be done because of excessive run times.

The stability limit for the calculations using brick elements is very restrictive.

Replacing the brick elements with a shell-element formulation would allow

for more efficient simulations.
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Figure 3.107: Bending-plate problem setup.
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Figure 3.108: Numerical results for the bending-plate problem. Plate displacement
is plotted.
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Max Displacement, δmax(cm) Period, T (µs)

Theory 0.395 2.81×103

3x150 0.443 2.94×103

5x250 0.411 2.83×103

9x450 0.399 2.79×103

Table 3.31: Numerical results for the bending-plate problem. Theoretical and
computed plate displacements and periods are tabulated.
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3.3.4 Shock Wave Impacting a Steel Panel

Test Description

This is a validation test of the multiphase model for a simulation of a shock wave

impacting a steel panel. The problem setup is discussed in Giordano et al. [37].

The test is designed to test fluid-structure interaction for a transient compressible

flow. The problem geometry is given in Figure 3.109, which was taken directly

from [37]. A thin cantilever plate (the panel) is placed in a shock tube along with

its support structure (the base). Both the panel and its base are made of steel.

The panel is oriented perpendicular to the flow direction. A pressure jump within

the tube generates a weak shock, which impacts the panel and induces flexure of

the plate.

Test Setup

A two-dimensional planar geometry was used in the calculations. The problem

dimensions are given in Figure 3.109. The domain inlet is located 6 cm in front

of the center of the panel, and the shock is initially located 3 cm in front of the

panel. The thickness of the panel is 0.1 cm. Data was obtained using four levels

of grid refinement. The grids were given the names x3, x5, x9, and x17, where the

numbers indicate the number of grid cells through the thickness of the panel. The

mesh was stretched to allow for more refinement near the panel.

The steel panel and base plate are modeled using the Lagrangian structural

model while the air is modeled as a single-phase material using the multiphase

method. The steel panel and base plate use a Grüneisen equation of state

(see §A.1.4) and an elastic strength model. The steel material properties are the

same as those used in §3.3.3. The air uses an ideal-gas equation of state with an

adiabatic constant of 1.4. The initial atmospheric conditions in the shock tube are

given by ρ = 1×10−3 g/cc and p = 1×10−6 Mbar. The shock Mach number is 1.21.

Given the ambient conditions in front of the shock, the state of the air behind the

shock is computed using the ideal-gas normal-shock relations [89].
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Test Theory

No analytic solution is available for this test. Therefore, the goal of this test

problem is to compare the results with the experimental data found in the original

paper by Giordano et al. [37], which also presents numerical calculations (referred

to as the GFSI calculation). The experimental data consists of shadowgraphs,

panel deflection measurements, and pressure probes.

Test Results

The first data compared with is the flow-visualization images. Giordano

presents shadowgraph images of the experiments. Those experimental images are

reproduced (on the left) in Figure 3.110. The figure also includes the numerical

results of Giordano (in the center) and the current results obtained on grid x5

(on the right). The shadowgraph images for the current results were obtained by

taking the magnitude of the gradient of the material density. The plot’s contour

levels and coloring were chosen to closely resemble the experimental images. The

shadowgraph plots highlight sharp gradients in the fluid density and therefore the

location of shock waves are depicted as dark lines. The panel and base structure

also appear as dark objects.

Shadowgraph images are given every 70 microseconds in Figure 3.110. These

time levels are based on the experimental data. The time levels of the current

results were synchronized such that the initial time level (t = 0 µs) of the

calculation most closely matched the initial time level of the experiments (a few

microseconds after the shock impacts the panel). Therefore, the time levels given in

the figure are actually offset by about 75 microseconds from the actual calculation.

The current results seem to agree qualitatively with the Giordano experiments

and calculations. After the shock interacts with the panel, a reflected shock forms

to the left of the panel and a transmitted shock can be seen on the right of the

panel. As the flow turns the corner around the panel, a cylindrical shock forms

(t = 70 µs). Note that the current calculations agree very well with the Giordano

results for the propagation of the shock wave. Specifically notice that the time
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levels at which the shock reflects off the base (t = 140 µs) and the far right

boundary (t = 630 µs) are similar in all columns of the figure. Even at late time

levels, after many complicated shock interactions, the same dominant features of

the flow-field in the Giordano results are also predicted in the current calculations.

Figure 3.111 shows the Giordano results and the current calculations on all four

of the grids that were run for this problem at t = 420 µs. As the grid refinement is

increased, the shock waves become more distinct in the shadowgraphs. However,

the location and structure of the shock waves are very consistent in all grid levels.

Therefore, this qualitatively indicates that the fluid solution, at least with respect

to the major shock waves, is grid-resolved, even on the coarsest grid shown here.

Although not shown here, this is consistent throughout all the time levels.

The vortex that forms off the tip of the panel (t = 420 µs) in the Giordano

results also appears in the current calculations. As the grid is refined, more features

become apparent. Eddies form in the finest grids. It is unclear if these eddies are

physical or if they are artifacts of the inviscid solver that would go away if viscosity

was included in the calculations. The experimental shadowgraphs show a vortex

forming off the tip of the panel, but it is less distinct than in the calculations,

which may indicate more complex 3D turbulent behavior.

The maximum displacement of the tip of the panel is plotted in Figure 3.112.

The experimental results are plotted against the Giordano calculations and the

current calculations on the four grid levels. For the current data, the displacement

was defined as the x coordinate of the center of the panel. It does not appear

that the data in the Giordano results were synchronized exactly to the data in

the shadowgraph images. Therefore, in order to match the data in this plot, the

time at which the initial panel displacement begins is the synchronization point

between the current calculations and the Giordano calculations. This resulted in

a zero offset for the current calculations.

The displacement is a good indicator for the adequacy of the grid refinement

for the structural solution. Grids x3 and x5 are both run out to 5 milliseconds.
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Due to stability criteria, the finer grids required very small time-steps. Therefore,

the solutions on grids x9 and x17 were not run to completion. However, the data

they did provide indicates that the solution is converging as the grid is refined.

However, the solution does not appear to be fully grid-converged.

The current calculations appear to reproduce the general trends of the Giordano

results, but there are some differences. The experimental results indicate that the

maximum displacement of the panel is around 6 mm, while the current results

suggest it should be closer to 7 mm. Also, the period of the oscillation is shorter

in the current calculations compared to the experiment. The experimental data

also contains more damping of the oscillations than seen in the calculations.

The current calculations appear to have the same deficiencies as those in the

GFSI calculations. It was postulated that the GFSI deficiencies were caused by

deformation of the support structure [37]. In addition it is expected that better

material property information would probably improve the agreement.

The experimental test setup used a pressure probe located a short distance

in front of the panel on the top of the shock tube. This data is plotted along

with the numerical data in Figure 3.113. The current calculations were given a

time offset of 45 microseconds to synchronize them to the Giordano results. The

calculations agree very well with the experimental data for the initial shock and

the subsequent reflection off the panel. After the initial shocks have passed, the

calculations slightly overestimate the pressure given in the experiments. Very close

agreement is seen between the computations on the four grid levels, indicating once

again that the fluid solution is grid-converged.

Test Conclusions

The following conclusions can be drawn from this calculation:

• The multiphase-flow algorithm appears to be coupled to the Lagrangian

structure properly for this problem. Comparing the predictions to the

experimental data reveal differences, but the trends appear to be captured

reasonably.
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• Predictions of the flow structure, including shock-wave dynamics, are well

correlated to the experimental data.

• The primary differences seen between the simulations and the experiments

were in the predictions of the panel deflections. A number of potential

causes have been identified for these differences. As discussed in [37],

potential errors in the experimental data set are possible due to motion of the

support structure. Also, the available material properties are not sufficient

to characterize the material response accurately.

• Viscosity was included in the GFSI calculations, but it was not included

in the current calculations. Adding viscosity could potentially improve the

results slightly, but it is not expected to have large impacts on the solution

quality.

• Structural bricks are not the ideal element formulation to use for thin plates.

Small mesh spacing within the panel resulted in very small time-step limits,

causing excessive run times and preventing additional grid refinement. Thus,

switching to a shell-element formulation, as used in the GFSI calculations,

would be preferred.
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Figure 3.109: Problem setup for a shock wave impacting a steel panel. Figure
taken from [37].
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280 µs

350 µs

420 µs

490 µs

Figure 3.110: Numerical results for a shock wave impacting a steel panel.
Experimental and Numerical Shadowgraphs are shown at various time levels. Left
column is the experimental shadowgraphs of Giordano. Center column is the
numerical calculation of Giordano. Right column is the current calculation on
Grid x5.
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1050 µs

Figure 3.110: Numerical results for a shock wave impacting a steel panel.
Experimental and Numerical Shadowgraphs are shown at various time levels. Left
column is the experimental shadowgraphs of Giordano. Center column is the
numerical calculation of Giordano. Right column is the current calculation on
Grid x5. (cont)
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Figure 3.110: Numerical results for a shock wave impacting a steel panel.
Experimental and Numerical Shadowgraphs are shown at various time levels. Left
column is the experimental shadowgraphs of Giordano. Center column is the
numerical calculation of Giordano. Right column is the current calculation on
Grid x5. (cont)
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Figure 3.111: Numerical results for a shock wave impacting a steel panel.
Shadowgraph taken at t = 420 µs. From top to bottom: Giordano Experiment,
Giordano Calculation, Current Calculation on Grid x3, Grid x5, Grid x9, Grid
x17.
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Figure 3.112: Numerical results for a shock wave impacting a steel panel. Plot of
panel displacement.
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Figure 3.113: Numerical results for a shock wave impacting a steel panel. Plot of
pressure probe data.
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3.3.5 Multiphase Fluid-Structure Interaction

Test Description

This problem is an exhibition of capability. It consists of a shock in a gas-particle

mixture impacting a flexible steel panel. The problem setup is derived from the

single-phase fluid-structure interaction problem discussed in the previous section

(§3.3.4). A thin cantilever panel made of steel is placed in a shock tube. The panel

is embedded within a multiphase gas-particle mixture. This mixture is the same

as the one used for the Sommerfeld dusty shock tube (§3.2.10).

This problem is similar to a weak blast wave impacting a structure within a

dusty environment. Therefore, this test is analogous to a number of defense and

safety applications.

Test Setup

A two-dimensional planar geometry was used in the calculations. The problem

dimensions are given in Figure 3.109 and discussed in §3.3.4. Numerical results

were obtained using a single level of grid refinement, corresponding to grid x5 in

the previous study.

The steel panel and base plate are modeled using the Lagrangian structural

model while the dusty gas is modeled using the current multiphase method. The

material properties of the steel are discussed in §3.3.4. The multiphase mixture

consists of air and glass particles. The air is modeled using the ideal-gas law and

the particles are represented by the stiffened-gas equation of state. The properties

of these materials are given in §3.2.10.

The initial temperature and pressure in the shock tube are given by T = 300 K

and p = 1×10−6 Mbar. The temperature and pressure behind the shock are the

same as the ones used for the single-phase test. The problem is initialized with

clean air (i.e. no particles) behind the shock at the inlet. To the right of the shock,

a particle-air mixture is specified. Therefore, particles initially surround the panel,

but there are no particles entrained within the initial shock.

The objective of the current problem is to determine how the presence of
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particles in the atmosphere will influence the impulse delivered to a structure from

a shock wave. To determine this influence, simulations are performed with various

particle loadings. The particle loading is defined as the mass of the particles

divided by the mass of the air. For the current calculations, 5 simulations are

performed with particle loadings of 0.0, 0.5, 1.0, 2.0, and 9.0. Since the density of

the particles is much larger than the density of the air, all of these cases result in

a dilute multiphase mixture.

Test Theory

This is an exhibition problem and no analytical theory or experimental data

exists for comparison. The goal of this test is simply to exercise the model on a

problem of interest.

Test Results

The only metric used in this study is the displacement of the panel. The

displacement was defined as the x coordinate of the center of the tip of the

panel. This is plotted in Figure 3.114. No experimental data was available for this

problem, so only simulation results are shown in the plot. The different colored

lines correspond to the initial particle loadings.

As seen in the plot, the panel displacement is reduced as the particle load is

increased. This is expected as some of the energy in the shock is used to accelerate

the particles, thus the energy transferred to the panel will be less. The particles

will also transfer some of their momentum back to the panel due to particle-to-

panel collisions. However, due to the inertia of the particles, this effect will lag

behind the shock impact. This effect is seen in the results since the period of the

panel deflection appears to increase as the particle loading increases, indicating

that the duration of the impulsive load on the structure is longer.

To quantify these results, the maximum panel displacement is tabulated

in Table 3.32. This table indicates that a particle loading of 9.0 decreases the

panel deflection by about 8% compared to the clean (0.0 load) case.
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Test Conclusions

The following conclusions can be drawn from this calculation:

• The current multiphase-flow algorithm is capable of simulating a gas-particle

mixture impacting a flexible structure. The results show that particles (i.e.

dust) around a structure will reduce the deflection of a structure due to a

blast wave, while increasing the time duration associated with the impulse.

There is no available data to validate the current calculations, but the trends

observed in the results seem reasonable.

• No grid convergence study was performed for the current problem. From the

results obtained for the single-phase version of the test, the current results

are not expected to be grid converged with respect to the displacement

predictions. Therefore, additional grid refinement should be performed.

However, it is assumed that the trends observed using the current grid will

also be present in calculations on a finer mesh.

• It is not known if interactions between the particles and the structure in this

problem are handled appropriately. The current model treats the particles

like a continuum fluid. Whether or not this is an accurate representation

of the physics is an open question. Although the total momentum of the

particles is properly conserved, details such as whether the particles bounce or

stick to the structure are not included. Therefore, the accuracy of the model

will need to be evaluated with experimental data for specific multiphase

regimes.
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Figure 3.114: Numerical results for a multiphase fluid impacting a steel panel.
Plot of panel displacement.
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Load Max Displacement

0.0 0.732
0.5 0.728
1.0 0.724
2.0 0.714
9.0 0.674

Table 3.32: Numerical results for a multiphase fluid impacting a steel panel. Table
of maximum panel displacement.
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Chapter 4

Conclusions

A novel computational scheme for simulating compressible multiphase flows

interacting with solid structures has been developed. The primary application

of the current work is the simulation of heterogeneous energetic material, such

as explosives or propellants. It is expected that the method will be powerful

enough for application to all stages of the problem, including the initial burning

of the material, the propagation of blast waves, and interaction with surrounding

structures. Although the eventual goal is to utilize the model for reactive materials,

the focus so far has been on evaluating the method using inert materials.

The multiphase model has been implemented into an existing hydrocode. Prior

to the current project, the code already had a large number of physics models,

including an existing Lagrangian structural solver. The code also had a preliminary

Eulerian multiphase capability based on the Discrete Equation Method (DEM).

This model was rewritten for the current study. The most critical development

for the current study was the addition of the ALE capability to run on moving

meshes and adding the ability to couple to a Lagrangian structure. This provides

the potential to model fluid-structure interaction problems where the working fluid

consists of a multiphase mixture. A survey of the literature indicates that this is

a unique capability.

The method has been tested on a number of canonical single-phase and

multiphase tests. These tests indicate that the scheme is applicable to the
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simple materials evaluated and suggest that the scheme would be appropriate for

more complicated multiphase problems. To date, the model has primarily been

exercised on calculations designed to verify that the model has been implemented

correctly and that the governing equations are satisfied. Only a limited number of

simulations have been performed to evaluate how well the model predicts particular

physics applications, so additional studies are still required. In particular, the

empirical relations used in the model, such as drag and heat transfer, must be

evaluated with respect to experimental evidence. How well these models represent

the behavior of actual gas-particle flows is currently an open question.

The fluid-structure coupling has been tested with some simple verification

problems with positive results. The scheme was validated for a single-phase

fluid-structure interaction problem with reasonable comparison to experimental

data. The method was employed on a similar multiphase fluid-structure

interaction problem, although no experimental data is available for comparison.

Unfortunately, very little information about relevant experimental studies is found

in the literature. Therefore, new experimental studies will need to be initiated.

Experiments are primarily needed to evaluate how the discrete phase interacts

with the structure. Some open questions that need to be resolved are: Is the

momentum properly transferred to the structure? Can a continuum adequately

represent individual particles bouncing off or sticking to solid boundaries, or would

a Lagrangian representation of the discrete phase be more appropriate? These

issues need to be investigated through much experimental validation.

4.1 Future Work

The initial implementation of the multiphase algorithms has been completed for

this project. However, this is a long-term effort that will extend beyond the scope

of the current study. A number of items have been identified for possible future

development.

• A number of enhancements can be made to the current MUSCL scheme.
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– It is not currently understood why the second-order scheme fails

to demonstrate second-order convergence in smooth multiphase tests

(see §3.2.1). A possibility is that the use of the simplified

predictor (2.86) is causing the rate of convergence to drop. Perhaps

using the full predictor (2.85), including contributions from the

multiphase nozzling terms, would regain the desired order of accuracy.

Resolving this issue will be an important component of future research.

– The current predictor scheme uses directional splitting to compute

the slopes. Historically, this has been the recommended technique.

However, Berger et al. [65] recently showed improved results using a

gradient-based approach. This method should be evaluated.

– The current scheme interpolates primitive variables to the faces. For

multiphase flows, this can result in an inconsistent state. It’s possible

that the choice of interpolation and limiters could improve performance

in this regard, particularly with respect to mass- and volume-fraction

positivity. Larrouturou [94] discusses an approach which is not directly

applicable to the current scheme, but other methods could be applied.

• The method of manufactured solutions is a rigorous technique for order-

of-accuracy verification, as discussed by Roache [78] and Salari et al. [79].

The idea is to manufacture an exact solution and then modify the original

governing equations by adding source terms in such a way that the

manufactured function becomes the exact solution. This could be a very

useful way to investigate the numerics of the multiphase algorithm. Applying

this method to the DEM is not straightforward due to the discrete nature of

the method. Therefore, its implementation will require some research.

• Complications arise due to the evaluation of complex equation of state.

Errors are especially common when materials occupy a small volume fraction

within a zone. For nearly incompressible materials, such as solids, the EOS is
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very stiff and a small error in the volume can result in very large errors in the

pressure and temperature. In addition, it is common for the hydrodynamic

model to put a phase into a state where the functional form of the EOS

is not valid, resulting in unrealistic pressures. One option is to investigate

simplified equations of state for the solid phase which are better behaved

in the relevant regions. Also, the code uses a number of cutoffs and ad hoc

adjustments in order to run robustly. These need to be evaluated more fully.

• Pressure relaxation is an open question for the current model. Many

multiphase algorithms employ pressure relaxation. The non-conservative

terms in the current DEM algorithm provide some mechanical relaxation

between the phases. It is not clear whether additional relaxation is

appropriate in order to account for sub-grid processes. The various options

need to be evaluated for particular flow regimes.

• As discussed, an option to run two-dimensional axisymmetric geometries

has been developed. Excellent results are obtained when the multiphase

model is run with a single-phase material. When multiple phases are used

some asymmetries are observed at the axis. It is possible that the method

suffers from the same drawbacks seen in the volume-based scheme discussed

in Maire [95] for cell-centered Lagrangian methods. Another possibility is

that it is a fundamental issue associated with modeling a discrete phase as a

continuum, as seen in Daniel et al. [96]. This should be investigated further.

• A number of problems require an enhancement of the current boundary

conditions. Currently, outflow and symmetry conditions are supported.

Additional functionality needs to be added.

• Additional dense regime compressible test problems need to be run. This is a

critical regime for the simulation of energetic granular materials. These tests

will require a compaction model. Therefore, implementation and evaluation

of such a model is required.
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• The primary focus of this research is in the area of reactive energetic

materials. Reactive chemistry models have been implemented in the code.

These models have not been discussed in an effort to limit the scope of the

current research. These models need to be better evaluated for a wide range

of applications.

• Multiphase materials currently interact with the structural-mechanics model

through Lagrangian brick elements. However, the current structural-

mechanics model has many additional features which do not currently

interact with the multiphase model. Structural elements such as shell and

beam elements are an example. Slide or contact surfaces are another example.

Interaction with these features could be very useful in multiphase calculations

and should be incorporated.

• Currently, a Lagrangian interface is required between multiphase and

structural material. This limits the amount of deformation allowed by the

solid. Relaxing this material boundary is a challenging research area that

could be very useful.
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Appendix A

Equations of State

This section describes various equations of state used in this work. A

thermodynamically consistent equation of state (EOS) model is needed for a

correct material description. The models use simplifying approximations in order

to capture the dominant physics they aim to capture. Model parameters are fit to

match data within a particular regime of interest.

The multiphase model discussed in this work allows for the use of a general

EOS. The models are generally functional forms, but in principle any model that

returns a pressure and temperature could be used–even tabular data. Since the

material density and energy are conserved quantities in the hydrodynamic model,

it is natural to express the pressure as the dependent variable, p = p(ρ, ε). In

addition, for problems with thermal effects, a caloric equation of state is required

to evaluate the temperature, T = T (ρ, ε). In general, the temperature obeys the

relation

T =
1

Cv

[ε − εcold] (A.1)

where Cv is the specific heat and εcold is the cold energy. The cold energy is a

function of density and is defined as the energy at zero temperature or equivalently

zero entropy. The EOS must obey the thermodynamic consistency relation

∂ε

∂v

∣

∣

∣

∣

T

= −p + T
∂p

∂T

∣

∣

∣

∣

v

(A.2)

where v = 1/ρ is the relative volume. The cold energy can be determined by
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integrating (A.2) along the T = 0 isotherm, such that

∂εcold

∂v

∣

∣

∣

∣

T

= −p

where the pressure is given by its functional form.

A.1 Functional Forms

A.1.1 Ideal Gas

The simplest EOS is the ideal-gas equations of state. It is often referred to as a

gamma-law gas. It can be derived from kinetic theory and is most accurate for

gases at high temperature and low pressure. As a function of energy and density,

the ideal-gas law is expressed as

p = (γ − 1) ρε (A.3)

where the adiabatic index γ is the ratio of specific heats. The temperature is

specified as

T =
ε

Cv

where the cold energy is zero.

A.1.2 Stiffened Gas

The ideal-gas law can be modified for use with high-pressure solids and liquids.

This model is called the stiffened-gas or Tammann EOS. Detailed descriptions of

this model are found in Menikoff [97] and Le Metayer et al. [98]. Numerical analysis

is found in Castro and Toro [99]. The EOS is given by:

p = (γ − 1) ρε − γP∞ (A.4)

where γ and P∞ are constant material dependent parameters which can be

determined from shock data (see Plohr [100] and Cocchi and Saurel [101] for

discussions).

In the above model, the thermodynamically consistent cold energy is given by

εcold =
P∞

ρ
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resulting in the temperature given by

T =
1

Cv

[

ε − P∞

ρ

]

Although the above model is thermodynamically consistent, it does not always

produce a realistic thermal response. Therefore, it is sometimes useful to replace

the density dependent cold energy with a constant value, such as

εcold = ε0
cold

where ε0
cold is a constant offset used to get a reasonable temperature at the reference

state.

A.1.3 JWL

The Jones-Wilkes-Lee (JWL) EOS is commonly used to model detonation product

gases. It’s form is

p = A

(

1 − ωρ

R1ρ0

)

exp

(−R1ρ
0

ρ

)

+ B

(

1 − ωρ

R2ρ0

)

exp

(−R2ρ
0

ρ

)

+ ωρε (A.5)

where ρ0 is the reference density for the material. The constants A, B, R1, R2,

and ω are material parameters, see [102]. The consistent temperature relation is

T =
1

Cv

[

ε −
(

A

R1ρ0
exp

(−R1ρ
0

ρ

)

+
B

R2ρ0
exp

(−R2ρ
0

ρ

))]

where the exponential terms make up the cold energy.

A.1.4 Grüneisen

The Grüneisen EOS is commonly used for solids. Using cubic shock velocity-

particle velocity, its form is given by

p =
ρ0c2µ

[

1 +
(

1 − γ0

2

)

µ − a
2
µ2
]

[

1 − (S1 − 1)µ − S2
µ2

(µ+1)
− S3

µ3

(µ+1)2

]2 + (γ0 + aµ)ρ0ε (A.6)

where ρ0 is the reference density for the material and µ is the compression given

by

µ =
ρ

ρ0

− 1
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The material constants are c, S1, S2, S3, γ0, and a. For materials in compression,

this equation is reduced to

p = ρ0c2µ + (γ0 + aµ)ρ0ε

There is no analytical expression available for the cold curve. Therefore, a

polynomial fit is used

εcold =
9
∑

i=0

[

Ec
i µ

i
]

where Ec
i are constants.
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Appendix B

Drag Coefficient Relations

This section describes various drag coefficient relations used in this work. The

drag coefficient, CD, is defined by (2.99) in §2.1.14.3. An overview of particulate

drag laws can be found in Crowe et al. [4]. Data for the drag around particles is

plotted in Figure B.1. The symbols represent experimental data from a number of

sources as assembled in White [41]. A subset of the mathematical models discussed

below are plotted as solid lines. As seen in the figure, the drag is dependent on

the Reynolds number, which is defined as

Re =
ρcdpVR

µc

where ρc is the fluid density, µc is the molecular viscosity of the fluid, dp is the

particle diameter, and VR is the relative velocity between the particle and the

surrounding fluid. The data is for an isolated sphere in an incompressible fluid.

Drag laws accounting for compressibility have been formulated, but they are not

discussed here. For dense particle flows, the porosity of the material must be taken

into account. That is done for a number of the following models.

B.1 Newton

The Newton drag law uses a constant value for the drag coefficient,

CD = 0.42
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The value of the constant defaults to 0.42, but can be modified by the user. The

value of 0.42 is reasonable for Reynolds numbers between 103 and 105. It is also

common to use a value of 2.0 for supersonic flows.

B.2 Stokes

The Stokes drag law is an analytic expression which can be derived assuming Stokes

flow where the inertial terms in the Navier-Stokes equations are ignored (see Crowe

et al. [4] for details). The Stokes drag coefficient is

CD =
24

Re

Stokes drag is valid for very low Reynolds numbers (Re < 1).

B.3 Schiller and Naumann

A drag relation attributed to Schiller and Naumann (1933) is

CD =
24

Re

(

1 + 0.15Re0.687
)

This relation is an empirical fit to experimental data and is reasonable for Re <

800.

B.4 Putnam

A drag relation attributed to Putnam (1961) is

CD =











24
Re

(

1 + 1
6
Re2/3

)

Re < 1000

0.4392 Re ≥ 1000

This relation is an empirical fit to experimental data and is reasonable for Re <

10, 000.

B.5 Ergun

The Ergun (1959) drag law was developed in a study of the pressure drop in a

packed bed. It is a combination of the Kozeny-Carman equation and the Burke-

Plummer equation. The model is discussed in Crowe et al. [4] and Gidaspow [103].
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The associated drag coefficient is

CD =
4

3

(

A
(1 − αg)

αgRe
+ B

)

where αg is the volume fraction of the gas. The constants are defined as A = 150

and B = 1.75, but can be modified by the user.

B.6 RUC

The Representative Unit Cell (RUC) drag model is another model for porous

media. It is described in Lundberg and Halvorsen [104]. The model has the

same form as the Ergun equation

CD =
4

3

(

A
(1 − αg)

αgRe
+ B

)

where αg is the volume fraction of the gas. However, for the RUC model, the

values of A and B are mathematically based, such that

A =
26.8α3

g

(1 − αg)2/3(1 − (1 − αg)1/3)(1 − (1 − αg)2/3)2

B =
α2

g

(1 − (1 − αg)2/3)2

B.7 Gidaspow

The Gidaspow drag model was developed for packed beds. It is discussed in

Gidaspow [103] and Lundberg and Halvorsen [104]. The model is a combination

of the Wen and Yu (1966) model for high porosity and and the Ergun equation for

low porosity. The corresponding drag coefficient for αg > 0.8 is

CD = αgCD0α
−2.65
g

where

CD0 =











24
αgRe

(1 + 0.15(αgRe)0.687) Re < 1000

0.44 Re ≥ 1000

and for αg ≤ 0.8

CD =
4

3

(

150.0
(1 − αg)

αgRe
+ 1.75

)
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B.8 Akhatov and Vainshtein

The model of Akhatov and Vainshtein [105] uses an interpolation between high

and low porosity cases. Defining the parameters

C1 =
24

Re
+

4.4

Re0.5
+ 0.42

C2 =
4

3αg

(

150.0
(1 − αg)

αgRe
+ 1.75

)

The drag coefficient is

CD =



























C1 αg ≥ 0.92

C2 αg ≤ 0.55

1
0.37

(0.92 − αg)C2 + (αg − 0.55)C1 0.55 < αg < 0.92
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Figure B.1: Comparison of experimental data to empirical relations for the drag
coefficient of a smooth solid sphere. Experimental data taken from White [41].
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Appendix C

Nusselt-Number Relations

This section describes various Nusselt-number relations used in this work. The

Nusselt number, Nu, is defined by (2.92) in §2.1.14.2. An overview of particulate

heat transfer can be found in Crowe et al. [4]. The Nusselt-number models

allow heat transfer between the phases accounting for conduction and convection.

Convection effects are dependent on the properties of the flow, such as Reynolds

number and Prandtl number. The Reynolds number is defined as

Re =
ρcdpVR

µc

where ρc is the fluid density, µc is the molecular viscosity of the fluid, dp is the

particle diameter, and VR is the relative velocity between the particle and the

surrounding fluid. The Prandtl number is

Pr =
µcCpc

kc

where kc is the conductivity of the fluid and Cpc is the specific heat at constant

pressure for the fluid.

C.1 Constant

The simplest model uses a constant value,

Nu = 2.0
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The value of the constant defaults to 2.0, but can be modified by the user. The

value of 2.0 corresponds to heat transfer for a particle in a stagnant medium with

no convection effects.

C.2 Ranz-Marshall

The heat-transfer rate increases with flow. The Ranz-Marshall (1951) model

accounts for convection effects,

Nu = 2.0 + 0.6Re1/2Pr1/3

The model is reasonable for Reynolds numbers less than 50, 000.
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Appendix D

Solution of the Relaxation

Equations

This section describes the solution techniques used to solve the thermal- and

velocity-relaxation equations derived in §2.1.14.2 and §2.1.14.3. Two distinct

solution algorithms have been developed to solve the relaxation ODE’s. These

are presented first. This is followed with an explanation of how the gas phase is

treated in the model.

D.1 Solving the System of ODE’s

The goal of the following sections is to solve the following system of non-

homogeneous ordinary differential equations:

dx0

dt
= − 1

τ0

x0 +
N
∑

i=1

[

ci

τi

xi

]

−
N
∑

i=1

[ciai] (D.1)

dxi

dt
=

1

τi

x0 −
1

τi

xi + ai : i = 1, N

where ci, τi, ai are constants and

1

τ0

=
N
∑

i=1

ci

τi

(D.2)

This system is obviously analogous to the equations solved for the thermal (2.96)

and velocity (2.104) relaxation modules. In these cases the dependent variable x
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simply represents the temperature T or a velocity component of ~u as appropriate.

The corresponding constants are also apparent.

In the current code, these equations can be solved using one of two methods.

The first is an analytic solution method where a closed-form solution is generated

using an eigenvalue decomposition. The second method solves the equations

numerically using the backward-Euler time-stepping scheme.

D.1.1 Analytic Relaxation

The system (D.1) can be represented in matrix form by

X ′ = AX + a (D.3)

with initial conditions X(t = 0) = X. This system will be solved analytically

using an eigenvalue decomposition. First, convert to a symmetric system using

the following transformation:

y0 = x0 (D.4)

yi =
√

cixi : i = 1, N

yielding the symmetric system

dy0

dt
= − 1

τ0

y0 +
N
∑

i=1

[√
ci

τi

yi

]

−
N
∑

i=1

[ciai] (D.5)

dyi

dt
=

√
ci

τi

y0 −
1

τi

yi +
√

ciai : i = 1, N

In matrix form this is expressed as

Y ′ = BY + b (D.6)

with

Y =























x0

√
c1x1

√
c2x2

...
√

cNxN






















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B =























− 1
τ0

√
c1

τ1

√
c2

τ2
. . .

√
cN

τN
√

c1
τ1

− 1
τ1

0 . . . 0
√

c2
τ2

0 − 1
τ2

. . . 0
...

...
...

. . .
...

√
cN

τN
0 0 . . . − 1

τN























and

b =























−∑N
i=1 [ciai]

√
c1a1

√
c2a2

...
√

cNaN























To solve the above system, it is desired to diagonalize the coefficient matrix so

that the equations become uncoupled. This is done by computing the eigenvalues

and eigenvectors. The eigenvalues are computed with the characteristic equation

det (λI − B) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ + 1
τ0

−
√

c1
τ1

−
√

c2
τ2

. . . −
√

cN

τN

−
√

c1
τ1

λ + 1
τ1

0 . . . 0

−
√

c2
τ2

0 λ + 1
τ2

. . . 0
...

...
...

. . .
...

−
√

cN

τN
0 0 . . . λ + 1

τN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

which reduces to a polynomial

det (λI − B) =

{

N
∏

i=1

[

λ +
1

τi

]

}







(

λ +
1

τ0

)

−
N
∑

i=1





ci

τ 2
i

(

λ + 1
τi

)











=

{

N
∏

i=1

[

λ +
1

τi

]

}







λ +
N
∑

i=1





ciλ

τi

(

λ + 1
τi

)











= 0

The eigenvalues are the roots of this equation. It is easily seen that one root

will always be zero (the right bracket is identically equal to zero if λ = 0). All

other eigenvalues will be negative since all coefficients in the characteristic equation
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are positive. The eigenvalue ordering is chosen such that λ0 = 0 with successive

eigenvalues decreasing in value (λi > λi+1). Once the eigenvalues are known, the

eigenvectors can be computed from

(λI − B) v = 0

where v is the eigenvector associated with the eigenvalue λ. This system is singular;

therefore, it is solved to an arbitrary constant. Looking at rows i = 1, N and

assuming there are no duplicate eigenvalues, the i component of v is computed as

vi =
1

v̄

√
ci

τi(λ + 1
τi

)

where v̄ is a constant defined in order to create an orthonormal basis. Thus, the

eigenvector associated with the eigenvalue λ is

v = v̄−1

























1
√

c1
τ1(λ+ 1

τ1
)

√
c2

τ2(λ+ 1

τ2
)

...
√

cN

τN (λ+ 1

τN
)

























where

v̄ =



1 +
N
∑

i=1

[ √
ci

τi(λ + 1
τi

)

]2




1

2

For the case with repeated eigenvalues, an alternative strategy must be used to

ensure the linear independence of the eigenvectors. Computing the eigenvalues

from the characteristic equation is difficult and inefficient for an arbitrary number

of phases. Therefore, in practice the eigenvalues and eigenvectors are calculated

numerically using LAPACK [106] routines.

After the eigenvectors have been computed, they can be used to diagonalize

matrix B. If the eigenvectors of B make up the columns of P , then

Λ = P−1BP
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where the eigenvalues make up the diagonal of Λ, such that

Λ =























λ0 0 0 . . . 0

0 λ1 0 . . . 0

0 0 λ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . λN























For symmetric B and orthonormal P , the inverse of the eigenvector matrix is equal

to its transpose

P−1 = P T

Thus

Λ = P T BP

This can be used to diagonalize the original system of ODE’s. Let

Y = PZ

Then, after substituting this into (D.6), the system can be diagonalized with the

following steps:

Y ′ = BY + b

PZ ′ = BPZ + b

Z ′ = P T BPZ + P T b

Z ′ = ΛZ + γ (D.7)

where the non-homogeneous constants are computed as

γ = P T b

γi =
N
∑

j=0

[Pjibj] = P0ib0 +
N
∑

j=1

[Pjibj]

= P0i

(

−
N
∑

j=1

[cjaj]

)

+
N
∑

j=1

[

Pji

(√
cjaj

)]

=
N
∑

j=1

[√
cjaj

(

Pji −
√

cjP0i

)]
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Note that for the special case when there are no repeated eigenvalues, the non-

homogeneous coefficient associated with the zeroth equation is zero (γ0 = 0);

although this is not true for the general case.

System (D.7) represents N+1 non-homogeneous ordinary differential equations.

Since the matrix is diagonal, the equations are uncoupled and can be solved

individually. The solutions are of the form

zi(t) = zH
i (t) + zP

i (t) : i = 0, N

with zH
i representing the homogeneous solution and zP

i representing the particular

solution. Depending on the value of λ, the solutions can be determined up to an

arbitrary constant αi.

for λ = 0:

zH
i (t) = αi

zP
i (t) =

∫

γi dt = γit

for λ 6= 0:

zH
i (t) = αie

λit

zP
i (t) = eλit

∫

e−λitγi dt = −γi

λi

The above solution can be generalized as

zi(t) = αie
λit + gi(t)

where

gi(t) =











+γit if λi = 0

− γi

λi
if λi 6= 0

The arbitrary constants αi in the solution are determined from the initial

conditions. Evaluating the above equation at time zero gives

zi(t = 0) = αi + gi(t = 0)
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





















α0

α1

α2

...

αN























= P T























X0

√
c1X1

√
c2X2

...
√

cNXN























−























g0

g1

g2

...

gN























where

gi = gi(t = 0) =











0 if λi = 0

− γi

λi
if λi 6= 0

Therefore, the constants can be computed as

αi = P0iX0 +
N
∑

j=1

[

Pji
√

cjXj

]

− gi

= α̃i − gi

where the homogeneous component has been split out, such that

α̃i = P0iX0 +
N
∑

j=1

[

Pji
√

cjXj

]

It is now possible to finish the solution. Recall,

Y = PZ

Thus, plugging the appropriate values into the solution, gives for i = 0, N

yi(t) =
N
∑

j=0

[

Pij

(

αje
λjt + gj

)]

=
N
∑

j=0

[

Pij

((

α̃j − gj

)

eλjt + gj

)]

=
N
∑

j=0

[

Pijα̃je
λjt
]

−
N
∑

j=0

[

Pij

(

gje
λjt − gj

)]

=
N
∑

j=0

[

Pij

(

α̃je
λjt + fj

)]
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where

fi =











γit if λi = 0

γi

λi

(

eλjt − 1
)

if λi 6= 0

results from the non-homogeneous part of the original system. The final answer is

achieved by a simple transformation back to X. Thus,

x0 = y0

xi =
1√
ci

yi : i = 1, N

Single Particle Phase (N = 1)

For the common case where there is a single particle phase embedded within

a fluid, the analytical solution becomes much simpler to express. A closed form

solution for the eigenvalues can be determined, such that

λ0 = 0

λ1 = −β

where

β =
c1 + 1

τ1

Therefore, the resulting eigenvector matrix is

P =
1√

c1 + 1





1
√

c1

√
c1 −1





Hence, plugging these values into the solution results in the final closed form

solution to the original ODE system.

x0 = X0 +
c1

c1 + 1

(

X0 − X1

)

(

e−βt − 1
)

+
c1a1τ1

c1 + 1

(

e−βt − 1
)

x1 = X1 −
1

c1 + 1

(

X0 − X1

)

(

e−βt − 1
)

− a1τ1

c1 + 1

(

e−βt − 1
)

As it is much more efficient, the code uses the above expressions, bypassing the

full eigenvalue solution, for problems with a single particle phase.
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D.1.2 Backward-Euler Relaxation

This section discusses backward-Euler relaxation. The backward-Euler method is

a numerical integration scheme which is implicit and first-order accurate. It is

discussed in many numerical method texts, e.g. [93]. The idea is to solve the ODE

system (D.1), which is represented in matrix form as

X ′ = AX + a

Applying the backward-Euler operator to the above system results in the following

discretization:

Xn+1 − Xn

∆t
= AXn+1 + a

assuming that A and a are constant. After rearranging, one arrives at a system

of linear equations.

(I − ∆tA) Xn+1 = Xn + ∆ta

or

BXn+1 = R (D.8)

The coefficient matrix is defined as

B = (I − ∆tA) =























(γ0 + 1) −c1γ1 −c2γ2 . . . −cNγN

−γ1 (γ1 + 1) 0 . . . 0

−γ2 0 (γ2 + 1) . . . 0
...

...
...

. . .
...

−γN 0 0 . . . (γN + 1)























where

γ0 =
∆t

τ0

γi =
∆t

τi
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and the right hand side is given by

R = Xn + ∆ta =























xn
0 − ∆t

∑N
i=1 [ciai]

xn
1 + ∆ta1

xn
2 + ∆ta2

...

xn
N + ∆taN























Many options are available for solving (D.8). The approach taken here is to

apply Cramer’s rule [107] since, as will be seen, it lends itself to a closed form

solution for matrix B. According to Cramer’s rule, the solution xn+1
i is given by

the ratio

xn+1
i =

det(Bi)

det(B)

where Bi is the the matrix B with the i column replaced by the column vector

R. For example, for the zeroth column

B0 =























R0 −c1γ1 −c2γ2 . . . −cNγN

R1 (γ1 + 1) 0 . . . 0

R2 0 (γ2 + 1) . . . 0
...

...
...

. . .
...

R3 0 0 . . . (γN + 1)























Therefore, the determinant in the numerator can be evaluated by co-factor
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expansion to obtain

det(B0) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R0 −c1γ1 −c2γ2 . . . −cNγN

R1 (γ1 + 1) 0 . . . 0

R2 0 (γ2 + 1) . . . 0
...

...
...

. . .
...

R3 0 0 . . . (γN + 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

{

N
∏

j=1

[γj + 1]

}{

R0 +
N
∑

j=1

[

Rjcjγj

(γj + 1)

]

}

=

{

N
∏

j=1

[γj + 1]

}{

xn
0 − ∆t

N
∑

j=1

[cjaj] +
N
∑

j=1

[

cjγj

(γj + 1)

(

xn
j + ∆taj

)

]

}

=

{

N
∏

j=1

[γj + 1]

}{

xn
0 +

N
∑

j=1

[

cjγj

(γj + 1)
xn

j − cjaj∆t

(γj + 1)

]

}

=

{

N
∏

j=1

[γj + 1]

}{

xn
0 +

N
∑

j=1

[

cjγj

(γj + 1)

(

xn
j − ajτj

)

]

}

Similarly, the denominator can be evaluated as

det(B) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(γ0 + 1) −c1γ1 −c2γ2 . . . −cNγN

−γ1 (γ1 + 1) 0 . . . 0

−γ2 0 (γ2 + 1) . . . 0
...

...
...

. . .
...

−γN 0 0 . . . (γN + 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

{

N
∏

j=1

[γj + 1]

}{

(γ0 + 1) −
N
∑

j=1

[

cjγ
2
j

(γj + 1)

]

}

=

{

N
∏

j=1

[γj + 1]

}{

N
∑

j=1

[cjγj] + 1 −
N
∑

j=1

[

cjγ
2
j

(γj + 1)

]

}

=

{

N
∏

j=1

[γj + 1]

}{

1 +
N
∑

j=1

[

cjγj

(γj + 1)

]

}

Thus, the solution for the zeroth entry in X is

xn+1
0 =

det(B0)

det(B)
=

xn
0 + S2

1 + S1
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where

S1 =
N
∑

j=1

[

cjγj

(γj + 1)

]

S2 =
N
∑

j=1

[

cjγj

(γj + 1)

(

xn
j − ajτj

)

]

Once xn+1
0 is known, xn+1

i can be determined from the original equations by

back-substitution

xn+1
i =

Ri + γix
n+1
0

(γi + 1)

=
xn

i + γiaiτi + γix
n+1
0

(γi + 1)

=
xn

i + γi

(

xn+1
0 + aiτi

)

(γi + 1)

Thus, the desired solution is obtained.

D.2 Bulk-Gas Properties

Since the multiphase model allows for multiple gas phases, each gas phase depends

on its own material properties, has a distinct thermodynamic state, and resides

in an isolated volume. However, actual gases would experience some mixing due

to molecular diffusion. Therefore, the temperature- and velocity-relaxation models

assume the gas phases mix instantaneously, resulting in a single combined bulk-gas

phase where all the gases are in equilibrium. This mixing process results in a net

increase in entropy.

In this section the equilibrium bulk-gas properties will be designated with the

superscript ∗. The bulk-gas properties are generally computed by summing over

the individual gas phases, indicated by the subscript i. The bulk-gas mass fraction

x∗ and volume fraction α∗ are summations over the gas phases

x∗ =
∑

i

xi

α∗ =
∑

i

αi
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The bulk density ρ∗, sound speed c∗, and thermal conductivity k∗ are computed

with a volume-weighted algebraic average

ρ∗ =

∑

i αiρi

α∗

c∗ =

∑

i αici

α∗

k∗ =

∑

i αiki

α∗

The bulk specific heats (C∗
v and C∗

p) use a mass-weighted algebraic average

C∗
v =

∑

i xiCvi

x∗

C∗
p =

∑

i xiCpi

x∗

The bulk-gas viscosity µ∗ uses a mass-weighted geometric average

µ∗ = exp

(∑

i xi ln (µi)

x∗

)

The heat-transfer model (thermal relaxation) assumes the gases are in thermal

equilibrium. Assuming that each gas phase enters the relaxation step with distinct

temperatures, the equilibrium temperature is determined by applying a change in

energy to each gas phase. Summing over all gas phases and applying the law of

energy conservation gives

∑

i

xiCvi (T
∗ − Ti) = 0

Solving for the equilibrium temperature gives

T ∗ =

∑

i xiCviTi

x∗C∗
v

The thermal-relaxation model then enforces this temperature by updating the

internal energy, ε

∆εi = Cvi (T
∗ − Ti)

Thus, the thermal-relaxation model assumes infinite heat conduction between the

gases. The above equations assume constant thermal properties over the time-step.
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Therefore, the thermal properties are evaluated at the beginning of the time-step

in the above equations.

The bulk velocity ~u∗ is computed by conserving momentum. Summing over

the change in momentum for each gas phase gives

∑

i

xi (~u
∗ − ~ui) = 0

resulting in a mass-weighted algebraic average

~u∗ =

∑

i xi~ui

x∗
(D.9)

The temperature-relaxation model will compute this bulk velocity and use it to

compute flow properties (such as Reynolds number), but will not actually modify

the phase velocity. The velocity-relaxation model will actually modify the phase

velocities such that

~ui = ~u∗

resulting in an infinite drag condition on the gas phases. This velocity update

results in a change in the kinetic energy of the phase. Therefore, in order to

conserve total energy in the zone, the total change in kinetic energy within the

zone is redistributed into internal energy in the gas phases.
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Appendix E

Evaluation of Discretization Error

Code verification plays an important role in software development. Roache [78]

outlines systematic techniques for verifying numerical codes. These techniques

require the evaluation of discretization errors. A measure of the discretization

error is required to evaluate the order of accuracy for the numerical solution.

The discretization error for a quantity f at a particular location is defined as

E(~x, t) = f calc(~x, t) − f exact(~x, t)

where the point-wise error is the difference between the discrete solution, f calc,

and the exact (continuum) solution, f exact. The above definition provides a local

measure of the error at specific points, but it is often useful to quantify the error

in a global sense. Several measures are possible for evaluation of the discretization

error. The error metrics used in the current study are discussed in Salari and

Knupp [79]. The current metrics utilize the L2-norm, given by

‖f calc − f exact‖2 =

√

∫

Ω

(f calc − f exact)2 dV

where the integrals are taken over the entire domain. Thus, the normalized global

error is given by

E =

√

∫

Ω
(f calc − f exact)2 dV

∫

Ω
dV
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Using single-point quadrature, the global error for a particular grid N can be

computed as

EN =

√

∑N
c=1

[

(f calc
c − f exact

c )2 Ωc

]

∑N
c=1 [Ωc]

where the sums are taken over each cell in the computational mesh and N is the

total number of cells in the mesh. The subscript c indicates that the calculated

and exact solutions are evaluated at the centroid of cell c. The global error is

weighted with the cell volume, Ωc, and it is normalized by the total volume of the

domain. A simplification to the above metric is

EN =
1

N

√

√

√

√

N
∑

c=1

[

(f calc
c − f exact

c )2
]

(E.1)

where the volume terms have been ignored. Salari and Knupp [79] show that (E.1)

is sufficient for the purposes of code verification, thus it is the form used in the

current study.

The error, given by (E.1) is a function of the mesh spacing, EN = EN(∆x).

For consistent numerical methods, the error follows

EN(∆x) = C(∆x)rN + H.O.T.

where rN is the order of accuracy for the method, C is an arbitrary constant, and

H.O.T. refers to higher-order terms. As the grid spacing, ∆x, becomes smaller, the

higher-order terms will vanish and the error will be dominated by the first term.

Calculations can be run on a series of different sized grids, with the error evaluated

on each grid. From this information, it is possible to acquire an observed order of

accuracy for the calculations. If Egrid1
N and Egrid2

N are the global error evaluated on

two meshes with mesh spacings of ∆xgrid1 and ∆xgrid2, then the observed order of

accuracy for the calculations is evaluated as

rN =
ln
(

Egrid1

N

Egrid2

N

)

ln
(

∆xgrid1

∆xgrid2

) (E.2)
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Systematic grid refinement can then be done for additional grid levels, computing

EN and rN at each level. The observed order of accuracy can then be compared

to the theoretical order of the method.
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